No Arabic abstract
The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschilds radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.
The amplitude A(s,t) for ultra-high energy scattering can be found in the leading eikonal approximation by considering propagation in an Aichelburg-Sexl gravitational shockwave background. Loop corrections in the QFT describing the scattered particles are encoded for energies below the Planck scale in an effective action which in general exhibits causality violation and Shapiro time advances. In this paper, we use Penrose limit techniques to calculate the full energy dependence of the scattering phase shift Theta_scat(hat_s},, where the single variable hat_s = Gs/m^2 b^(d-2) contains both the CM energy s and impact parameter b, for a range of scalar QFTs in d dimensions with different renormalizability properties. We evaluate the high-energy limit of Theta_scat(hat_s) and show in detail how causality is related to the existence of a well-defined UV completion. Similarities with graviton scattering and the corresponding resolution of causality violation in the effective action by string theory are briefly discussed.
We study the Regge and hard scattering limits of the one-loop amplitude for massless open string states in the type I theory. For hard scattering we find the exact coefficient multiplying the known exponential falloff in terms of the scattering angle, without relying on a saddle point approximation for the integration over the cross ratio. This bypasses the issues of estimating the contributions from flat directions, as well as those that arise from fluctuations of the gaussian integration about a saddle point. This result allows for a straightforward computation of the small- angle behavior of the hard scattering regime and we find complete agreement with the Regge limit at high momentum transfer, as expected.
We consider Riemann-Cartan gravity with minimal Palatini action, which is classically equivalent to Einstein gravity. Following the ideas of L.Lipatov cite{LipGrav} we propose the effective action for this theory aimed at the description of the high-energy scattering of gravitating particles in the multi - Regge kinematics. For that purpose we add to the Palatini action the new terms responsible for the interaction of gravitational quanta with certain collective excitations that replace exchange by multiple gravitational excitations. We propose the heuristic explanation of its particular form based on an analogy to the reggeon field theory of QCD. We argue that Regge kinematics assumes the appearance of an effective two - dimensional model describing the high - energy scattering similar to that of QCD. Such a model may be formulated in a way leading to our final effective theory, which contains interaction between the ordinary quanta of spin connection and vielbein with their effective counterparts that pretend to the role of the gravitational reggeons.
Closed expressions for the Green function and amplitude of the scalar particle scattering in the external gravitational field $g_{mu u}(x)$ are found in the form of functional integrals. It is shown that, as compared with the scattering on the vector potential, the tensor character of the gravitational field leads to a more rapid increase of the cross section with increasing energy. Discrete energy levels of particles are obtained in the Newton potential.
This is a personal recollection of several results related to the study of the high energy limit of scattering amplitudes in gravitational theories. They would not have been possible without the encouragement and constant support from Lev Nikolaevich Lipatov.