We observed a linearly sliced area of the Cygnus Loop from the north-east to the south-west with Suzaku in seven pointings. After dividing the entire fields of view (FOV) into 119 cells, we extracted spectra from all of the cells and performed spectral analysis for them. We then applied both one- and two-component non-equilibrium ionization (NEI) models for all of the spectra, finding that almost all were significantly better fitted by the two-component NEI model rather than the one-component NEI model. Judging from the abundances, the high-kT_e component must be the ejecta component, while the low-kT_e component comes from the swept-up matter. Therefore, the ejecta turn out to be distributed inside a large area (at least our FOV) of the Cygnus Loop. We divided the entire FOV into northern and southern parts, and found that the ejecta distributions were asymmetric to the geometric center: the ejecta of Si, S, and Fe seem to be distributed more in the south than in the north of the Cygnus Loop by a factor of about 2. The degree of ejecta-asymmetry is consistent with that expected by recent supernova explosion models.