No Arabic abstract
We present general expressions for the oblique parameters S, T, U, V, W, and X in the SU(2)xU(1) electroweak model with an arbitrary number of scalar SU(2) doublets, with hypercharge 1/2, and an arbitrary number of scalar SU(2) singlets.
We show that there are regions of parameter space in multi-scalar doublet models where, in the first few hundred inverse femtobarns of data, the new charged and neutral scalars are not directly observable at the LHC and yet the Higgs decay rate to b bbar is changed significantly from its standard model value. For a light Higgs with a mass less than 140 GeV, this can cause a large change in the number of two photon and tau tau Higgs decay events expected at the LHC compared to the minimal standard model. In the models we consider, the principle of minimal flavor violation is used to suppress flavor changing neutral currents. This paper emphasizes the importance of measuring the properties of the Higgs boson at the LHC; for a range of parameters the model considered has new physics at the TeV scale that is invisible, in the first few hundred inverse femtobarns of integrated luminosity at the LHC, except indirectly through the measurement of Higgs boson properties.
N-Higgs doublet models (NHDM) are a popular framework to construct electroweak symmetry breaking mechanisms beyond the Standard model. Usually, one builds an NHDM scalar sector which is invariant under a certain symmetry group. Although several such groups have been used, no general analysis of symmetries possible in the NHDM scalar sector exists. Here, we make the first step towards this goal by classifying the elementary building blocks, namely the abelian symmetry groups, with a special emphasis on finite groups. We describe a strategy that identifies all abelian groups which are realizable as symmetry groups of the NHDM Higgs potential. We consider both the groups of Higgs-family transformations only and the groups which also contain generalized CP transformations. We illustrate this strategy with the examples of 3HDM and 4HDM and prove several statements for arbitrary N.
We derive a general expression for Delta rho (or, equivalently, for the oblique parameter T) in the SU(2) x U(1) electroweak model with an arbitrary number of scalar SU(2) doublets, with hypercharge +-1/2, and an arbitrary number of scalar SU(2) singlets. The experimental bound on Delta rho constitutes a strong constraint on the masses and mixings of the scalar particles in that model.
In many models, stability of dark matter particles is protected by a conserved Z_2 quantum number. However dark matter can be stabilized by other discrete symmetry groups, and examples of such models with custom-tailored field content have been proposed. Here we show that electroweak symmetry breaking models with N Higgs doublets can readily accommodate scalar dark matter candidates stabilized by groups Z_p with any $p le 2^{N-1}$, leading to a variety of kinds of microscopic dynamics in the dark sector. We give examples in which semi-annihilation or multiple semi-annihilation processes are allowed or forbidden, which can be especially interesting in the case of asymmetric dark matter.
We demonstrate how residual flavour symmetries, infrared signatures of symmetry breaking in complete models of flavour, can naturally forbid (or limit in a flavour specific way) flavour-changing neutral currents (FCNC) in multi-Higgs-doublet models (MHDM) without using mass hierarchies. We first review how this model-independent mechanism can control the fermionic mixing patterns of the Standard Model, and then implement the symmetries in the Yukawa sector of MHDM, which allows us to intimately connect the predictivity of a given flavour model with its ability to sequester FCNC. Finally, after discussing various subtleties of the approach, we sketch an $A_4$ toy model that realises an explicit example of these simplified constructions.