Do you want to publish a course? Click here

Status of GRB Observations with the Suzaku Wideband All-sky Monitor

207   0   0.0 ( 0 )
 Added by Makoto Tashiro
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Wide-band All-sky Monitor (WAM) is a function of the large lateral BGO shield of the Hard X-ray Detector (HXD) onboard Suzaku. Its large geometrical area of 800 cm^2 per side, the large stopping power for the hard X-rays and the wide-field of view make the WAM an ideal detector for gamma-ray bursts (GRBs) observations in the energy range of 50-5000 keV. In fact, the WAM has observed 288 GRBs confirmed by other satellites, till the end of May 2007.



rate research

Read More

359 - L. Amati , J. Braga , F. Frontera 2014
We describe the GRB and All-sky Monitor Experiment (GAME) mission submitted by a large international collaboration (Italy, Germany, Czech Repubblic, Slovenia, Brazil) in response to the 2012 ESA call for a small mission opportunity for a launch in 2017 and presently under further investigation for subsequent opportunities. The general scientific objective is to perform measurements of key importance for GRB science and to provide the wide astrophysical community of an advanced X-ray all-sky monitoring system. The proposed payload was based on silicon drift detectors (~1-50 keV), CdZnTe (CZT) detectors (~15-200 keV) and crystal scintillators in phoswich (NaI/CsI) configuration (~20 keV-20 MeV), three well established technologies, for a total weight of ~250 kg and a required power of ~240 W. Such instrumentation allows a unique, unprecedented and very powerful combination of large field of view (3-4 sr), a broad energy energy band extending from ~1 keV up to ~20 MeV, an energy resolution as good as ~300 eV in the 1-30 keV energy range, a source location accuracy of ~1 arcmin. The mission profile included a launch (e.g., by Vega) into a low Earth orbit, a baseline sky scanning mode plus pointed observations of regions of particular interest, data transmission to ground via X-band (4.8 Gb/orbit, Alcantara and Malindi ground stations), and prompt transmission of GRB / transient triggers.
50 - S.Osone 2003
We discuss feasibility of Gamma ray burst (GRB) with TeV gamma ray all sky monitor and discuss necessity of TeV gamma ray cherenkov all sky monitor.
Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog enters or exits occultation by the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermis solar panels. We will present early results. Regularly updated results can be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation
The 2.1-s anomalous X-ray pulsar 1E 1547.0-5408 exhibited an X-ray outburst on 2009 January 22, emitting a large number of short bursts. The wide-band all- sky monitor (WAM) on-board Suzaku detected at least 254 bursts in the 160keV-6.2MeV band over the period of January 22 00:57-17:02 UT from the direction of 1E 1547.0-5408. One of these bursts, which occurred at 06:45:13, produced the brightest fluence in the 0.5-6.2MeV range, with an averaged 0.16-6.2MeV flux and extrapolated 25 keV-2 MeV fluence of about 3x10-6 erg cm-2 s-1 and about 3x10-4 erg cm-2, respectively. After pile-up corrections, the time-resolved WAM spectra of this burst were well-fitted in the 0.16-6.2MeV range by two-component models; specifically, a blackbody plus an optically thin thermal bremsstrahlung or a combination of a blackbody and a power-law component with an exponential cutoff. These results are compared with previous works reporting the persistent emission and weaker short bursts followed by the same outburst.
107 - D. A. Smith 2001
We present X-ray light curves (1.5-12 keV) for fifteen gamma-ray bursts (GRBs) detected by the All-Sky Monitor on the Rossi X-ray Timing Explorer. We compare these soft X-ray light curves with count rate histories obtained by the high-energy (>12 keV) experiments BATSE, Konus-Wind, the BeppoSAX Gamma-Ray Burst Monitor, and the burst monitor on Ulysses. We discuss these light curves within the context of a simple relativistic fireball and synchrotron shock paradigm, and we address the possibility of having observed the transition between a GRB and its afterglow. The light curves show diverse morphologies, with striking differences between energy bands. In several bursts, intervals of significant emission are evident in the ASM energy range with little or no corresponding emission apparent in the high-energy light curves. For example, the final peak of GRB 970815 as recorded by the ASM is only detected in the softest BATSE energy bands. We also study the duration of bursts as a function of energy. Simple, singly-peaked bursts seem consistent with the E^{-0.5} power law expected from an origin in synchrotron radiation, but durations of bursts that exhibit complex temporal structure are not consistent with this prediction. Bursts such as GRB 970828 that show many short spikes of emission at high energies last significantly longer at low energies than the synchrotron cooling law would predict.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا