Do you want to publish a course? Click here

First-principles calculations of the vibrational properties of bulk CdSe and CdSe nanowires

172   0   0.0 ( 0 )
 Added by Marcel Mohr
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present first-principles calculations on bulk CdSe and CdSe nanowires with diameters of up to 22 AA. Density functional linear combination of atomic orbitals and plane wave calculations of the electronic and structural properties are presented and discussed. We use an iterative, symmetry-based method to relax the structures into the ground state. We find that the band gap depends on surface termination. Vibrational properties in the whole Brillouin zone of bulk CdSe and the zone-center vibrations of nanowires are calculated and analyzed. We find strongly size-dependent and nearly constant modes, depending on the displacement directions. A comparison with available experimental Raman data is be given.

rate research

Read More

We calculate the bulk photovoltaic response of the ferroelectrics BaTiO$_3$ and PbTiO$_3$ from first principles by applying shift current theory to the electronic structure from density functional theory. The first principles results for BaTiO$_3$ reproduce eperimental photocurrent direction and magnitude as a function of light frequency, as well as the dependence of current on light polarization, demonstrating that shift current is the dominant mechanism of the bulk photovoltaic effect in BaTiO$_3$. Additionally, we analyze the relationship between response and material properties in detail. The photocurrent does not depend simply or strongly on the magnitude of material polarization, as has been previously assumed; instead, electronic states with delocalized, covalent bonding that is highly asymmetric along the current direction are required for strong shift current enhancements. The complexity of the response dependence on both external and material parameters suggests applications not only in solar energy conversion, but to photocatalysis and sensor and switch type devices as well.
CdSe nanoplatelets show perfectly quantized thicknesses of few monolayers. They present a situation of extreme, yet well defined quantum confinement. Due to large dielectric contrast between the semiconductor and its ligand environment, interaction between carriers and their dielectric images strongly renormalize bare single particle states. We discuss the electronic properties of this original system in an advanced tight-binding model, and show that Coulomb interactions, including self-energy corrections and enhanced electron-hole interaction, lead to exciton binding energies up to several hundred meVs.
Some highly ordered compounds of graphene oxide (GO), e.g., the so-called clamped and unzipped GO, are shown to have piezoelectric responses via first-principles density functional calculations. By applying an electric field perpendicular to the GO basal plane, the largest value of in-plane strain and strain piezoelectric coefficient, d31 are found to be 0.12% and 0.24 pm/V, respectively, which are comparable with those of some advanced piezoelectric materials. An in-depth molecular structural analysis reveals that deformation of the oxygen doping regions in the clamped GO dominates its overall strain output, whereas deformation of the regions without oxygen dopant in the unzipped GO determines its overall piezoelectric strain. This understanding explains the observed dependence of d31 on oxygen doping rate, i.e., higher oxygen concentration giving rise to a larger d31 in the clamped GO whereas leading to a reduced d31 in the unzipped GO. As the thinnest two-dimensional piezoelectric materials, GO has a great potential for a wide range of MEMS/NEMS actuators and sensors.
We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corral and the possibility of the appearance of spin--polarized states. In order to classify the peaks in the calculated density of states with orbital quantum numbers we analyzed the problem in terms of a simple quantum mechanical circular well model. This model is also used to estimate the behaviour of the magnetization and energy with respect to the radius of the circular corral. The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method.
Insights to the mechanism of CdSe nanoparticle attachment to carbon nanotubes following the hot injection method are discussed. It was observed that the presence of water improves the nanotube coverage while Cl containing media are responsible for the shape transformation of the nanoparticles and further attachment to the carbon lattice. The experiments also show that the mechanism taking place involves the right balance of several factors, namely, low passivated nanoparticle surface, particles with well-defined crystallographic facets, and interaction with an organics-free sp2 carbon lattice. Furthermore, this procedure can be extended to cover graphene by quantum dots.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا