Do you want to publish a course? Click here

The cross-correlation of the CMB polarisation and the 21-cm line fluctuations from cosmic reionisation

99   0   0.0 ( 0 )
 Added by Hiroyuki Tashiro
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cosmic microwave background (CMB) polarisation and the 21 cm line fluctuations are powerful probes of cosmological reionisation. We study how the cross-correlation between the CMB polarisation (E-modes) and the 21 cm line fluctuations can be used to gain further understanding of the reionisation history, within the framework of inhomogeneous reionisation. Since the E-mode polarisation reflects the amplitude of the quadrupole component of the CMB temperature fluctuations, the angular power spectrum of the cross-correlation exhibits oscillations at all multipoles. The first peak of the power spectrum appears at the scale corresponding to the quadrupole at the redshift that is probed by the 21 cm line fluctuations. The peak reaches its maximum value in redshift when the average ionisation fraction of the universe is about half. On the other hand, on small scales, there is a damping that depends on the duration of reionisation. Thus, the cross-correlation between the CMB polarisation and the 21 cm line fluctuations has the potential to constrain accurately the epoch and the duration of reionisation.



rate research

Read More

We investigate the impact of neutral hydrogen (HI) in galaxies on the statistics of 21-cm fluctuations using analytic and semi-numerical modelling. Following the reionisation of hydrogen the HI content of the Universe is dominated by damped absorption systems (DLAs), with a cosmic density in HI that is observed to be constant at a level equal to ~2% of the cosmic baryon density from z~1 to z~5. We show that extrapolation of this constant fraction into the reionisation epoch results in a reduction of 10-20% in the amplitude of 21-cm fluctuations over a range of spatial scales. The assumption of a different percentage during the reionisation era results in a proportional change in the 21-cm fluctuation amplitude. We find that consideration of HI in galaxies/DLAs reduces the prominence of the HII region induced shoulder in the 21-cm power spectrum (PS), and hence modifies the scale dependence of 21-cm fluctuations. We also estimate the 21cm-galaxy cross PS, and show that the cross PS changes sign on scales corresponding to the HII regions. From consideration of the sensitivity for forthcoming low-frequency arrays we find that the effects of HI in galaxies/DLAs on the statistics of 21-cm fluctuations will be significant with respect to the precision of a PS or cross PS measurement. In addition, since overdense regions are reionised first we demonstrate that the cross-correlation between galaxies and 21-cm emission changes sign at the end of the reionisation era, providing an alternative avenue to pinpoint the end of reionisation. The sum of our analysis indicates that the HI content of the galaxies that reionise the universe will need to be considered in detailed modelling of the 21-cm intensity PS in order to correctly interpret measurements from forthcoming low-frequency arrays.
In this letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 < z < 1 over two fields totaling ~41 deg. sq. and 190 hours of radio integration time. The cross-correlation constrains Omega_HI b_HI r = [0.43 pm 0.07 (stat.) pm 0.04(sys.)] x 10^-3, where Omega_HI is the neutral hydrogen HI fraction, r is the galaxy-hydrogen correlation coefficient, and b_HI is the HI bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z ~ 0.8 both in its precision and in the range of scales probed.
It has recently been suggested that the power spectrum of redshifted 21cm fluctuations could be used to measure the scale of baryonic acoustic oscillations (BAOs) during the reionisation era. The resulting measurements are potentially as precise as those offered by the next generation of galaxy redshift surveys at lower redshift. However unlike galaxy redshift surveys, which in the linear regime are subject to a scale independent galaxy bias, the growth of ionised regions during reionisation is thought to introduce a strongly scale dependent relationship between the 21cm and mass power spectra. We use a semi-numerical model for reionisation to assess the impact of ionised regions on the precision and accuracy with which the BAO scale could be measured using redshifted 21cm observations. For a model in which reionisation is completed at z~6, we find that the constraints on the BAO scale are not systematically biased at z > 6.5. In this scenario, and assuming the sensitivity attainable with a low-frequency array comprising 10 times the collecting area of the Murchison Widefield Array, the BAO scale could be measured to within 1.5 per cent in the range 6.5 < z < 7.5.
We explore methods for robust estimation of the 21 cm signal from the Epoch of Reionisation (EoR). A Kernel Density Estimator (KDE) is introduced for measuring the spatial temperature fluctuation power spectrum from the EoR. The KDE estimates the underlying probability distribution function of fluctuations as a function of spatial scale, and contains different systematic biases and errors to the typical approach to estimating the fluctuation power spectrum. Extraction of histograms of visibilities allows moments analysis to be used to discriminate foregrounds from 21 cm signal and thermal noise. We use the information available in the histograms, along with the statistical dis-similarity of foregrounds from two independent observing fields, to robustly separate foregrounds from cosmological signal, while making no assumptions about the Gaussianity of the signal. Using two independent observing fields to robustly discriminate signal from foregrounds is crucial for the analysis presented in this paper. We apply the techniques to 13 hours of Murchison Widefield Array (MWA) EoR data over two observing fields. We compare the output to that obtained with a comparative power spectrum estimation method, and demonstrate the reduced foreground contamination using this approach. Using the second moment obtained directly from the KDE distribution functions yields a factor of 2-3 improvement in power for k < 0.3hMpc^{-1} compared with a matched delay space power estimator, while weighting data by additional statistics does not offer significant improvement beyond that available for thermal noise-only weights.
The late-time growth of large scale structures (LSS) is imprinted in the CMBR anisotropy through the Integrated Sachs Wolfe (ISW) effect. This is perceived to be a very important observational probe of dark energy. Future observations of redshifted 21-cm radiation from the cosmological neutral hydrogen (HI) distribution hold the potential of probing the LSS over a large redshift range. We have investigated the possibility of detecting the ISW through cross-correlations between the CMBR anisotropies and redshifted 21-cm observations. Assuming that the HI traces the dark matter, we find that the ISW-HI cross-correlation angular power spectrum at an angular multipole l is proportional to the dark matter power spectrum evaluated at the comoving wave number l/r, where r is the comoving distance to the redshift from which the HI signal originated. The amplitude of the cross-correlation signal depends on parameters related to the HI distribution and the growth of cosmological perturbations. However the cross-correlation is extremely weak as compared to the CMBR anisotropies and the predicted HI signal. As a consequence the cross-correlation signal is smaller than the cosmic variance, and a statistically significant detection is not very likely.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا