Do you want to publish a course? Click here

Study of $eta$ photoproduction on the proton in a chiral constituent quark approach via one-gluon-exchange model

103   0   0.0 ( 0 )
 Added by Jun He
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

A formalism based on a chiral quark model ($chi$QM) approach complemented with a one-gluon exchange model, to take into account the breakdown of the $SU(6)otimes O(3)$ symmetry, is presented. The configuration mixing of wave functions for nucleon and resonances are derived. % With few adjustable parameters, differential cross-section and polarized beam asymmetry for the $gamma p to eta p$ process are calculated and successfully compared with the data in the centre-of-mass energy range from threshold up to 2 GeV. The known resonances $S_{11}(1535)$, $S_{11}(1650)$, $P_{13}(1720)$, $D_{13}(1520)$, and $F_{15}(1680)$, as well as two new $S_{11}$ and $D_{15}$ resonances are found to be dominant in the reaction mechanism. Besides, connections among the scattering amplitudes of the $chi$QM approach and the helicity amplitudes, as well as decay widths of resonances are established. Possible contributions from the so-called missing resonances are investigated and found to be negligible.

rate research

Read More

131 - Jun He , B. Saghai 2010
A chiral constituent quark model approach, embodying s- and u-channel exchanges,complemented with a Reggeized treatment for t-channel is presented. A model is obtained allowing data for $pi^- p to eta n$ and $gamma p to eta p$ to be describe satisfactorily. For the latter reaction, recently released data by CLAS and CBELSA/TAPS Collaborations in the system total energy range $1.6 lesssim W lesssim 2.8$ GeV are well reproduced due to the inclusion of Reggeized trajectories instead of simple $rho$ and $omega$ poles. Contribution from missing resonances is found to be negligible in the considered processes.
316 - F. Huang , W.L. Wang , Z.Y. Zhang 2007
A preliminary investigation of the anti-K N interaction is performed within a chiral constituent quark model by solving the resonating group method (RGM) equation. The model parameters are taken from our previous work, which gave a satisfactory description of the S-, P-, D-, F-wave KN scattering phase shifts. The channel-coupling between anti-K N, pi Lambda and pi Sigma is considered, and the scattering phase shifts as well as the bound-state problem of anti-K N are dynamically studied. The results show that the S-wave anti-K N interaction in the isospin I=0 channel is attractive, and in the extended chiral SU(3) quark model such an attraction can make for an anti-K N bound state, which appears as a pi Sigma resonance in the coupled-channel calculation, while the chiral SU(3) quark model cannot accommodate the existence of an anti-K N bound state. It seems that the vector meson exchanges are necessary to be introduced in the quark-quark interactions if one tries to explain the Lambda(1405) as an anti-K N bound state or a pi Sigma - anti-K N resonance state.
A review is given of the present situation in YN scattering. Special attention is given to the handling of SU(3) in the various meson exchanges. The importance of the almost always ignored contribution of the Pomeron is reiterated.
We have performed a study of the isovector, octet and singlet axial charges of the proton in an extended chiral constituent quark model, where all the possible $uudqbar{q}$~($q=u,d,s$) five-quark Fock components in the proton wave function are taken into account. The $^3P_0$ quark-antiquark creation mechanism is assumed to account for the transition coupling between three- and five-quark components in proton, and the corresponding transition coupling strength is fixed by fitting the intrinsic sea flavor asymmetry $bar{d}-bar{u}$ data for proton. Accordingly, with all the parameters fixed by empirical values, the probabilities of the intrinsic five-quark Fock components in proton wave function should be $sim30 - 50%$, which lead to the numerical results for quark spin $Delta u$, $Delta d$ and $Delta s$, as well the axial charges of proton consistent with the experimental data and predictions by other theoretical approaches.
${bf Background}$ Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger Equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). ${bf Purpose}$ Seeking to bridge these complementary worldviews, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. ${bf Method}$ To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark $+$ scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter Equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data. ${bf Results}$ From this formalism, we define and compute a new quantity --- the Euclidean density function (EDF) --- an object that characterizes the nucleons various charge distributions as functions of the quarks Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the dressing effect on the protons axial-singlet charge to be small in magnitude and consistent with zero. ${bf Conclusions}$ The scalar quark $+$ diquark ECQM is a step toward a realistic quark model in Euclidean space, and urges additional refinements. The small size we obtain for the impact of the dressed vertex on the axial-singlet charge suggests that models without this effect are on firm ground to neglect it.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا