Do you want to publish a course? Click here

Interstellar Dust Inside and Outside the Heliosphere

85   0   0.0 ( 0 )
 Added by Harald Krueger
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the early 1990s, after its Jupiter flyby, the Ulysses spacecraft identified interstellar dust in the solar system. Since then the in-situ dust detector on board Ulysses continuously monitored interstellar grains with masses up to 10e-13 kg, penetrating deep into the solar system. While Ulysses measured the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged grains with the time varying interplanetary magnetic field. The grains act as tracers of the physical conditions in the local interstellar cloud (LIC). Our in-situ measurements imply the existence of a population of big interstellar grains (up to 10e-13 kg) and a gas-to-dust-mass ratio in the LIC which is a factor of > 2 larger than the one derived from astronomical observations, indicating a concentration of interstellar dust in the very local interstellar medium. Until 2004, the interstellar dust flow direction measured by Ulysses was close to the mean apex of the Suns motion through the LIC, while in 2005, the data showed a 30 deg shift, the reason of which is presently unknown. We review the results from spacecraft-based in-situ interstellar dust measurements in the solar system and their implications for the physical and chemical state of the LIC.



rate research

Read More

Planet migration in protoplanetary discs plays an important role in the longer term evolution of planetary systems, yet we currently have no direct observational test to determine if a planet is migrating in its gaseous disc. We explore the formation and evolution of dust rings - now commonly observed in protoplanetary discs by ALMA - in the presence of relatively low mass (12-60 Earth masses) migrating planets. Through two dimensional hydrodynamical simulations using gas and dust we find that the importance of perturbations in the pressure profile interior and exterior to the planet varies for different particle sizes. For small sizes a dust enhancement occurs interior to the planet, whereas it is exterior to it for large particles. The transition between these two behaviours happens when the dust drift velocity is comparable to the planet migration velocity. We predict that an observational signature of a migrating planet consists of a significant outwards shift of an observed midplane dust ring as the wavelength is increased.
133 - P. C. Frisch 2012
Measurements of the velocity of interstellar HeI inside of the heliosphere have been conducted over the past forty years. These historical data suggest that the ecliptic longitude of the direction of the interstellar flow has increased at an average rate of about 0.19 degrees per year over time. Possible astronomical explanations for these short-term variations in the interstellar gas entering the heliosphere are presented.
Inspired by Ramseys theorem for pairs, Rival and Sands proved what we refer to as an inside/outside Ramsey theorem: every infinite graph $G$ contains an infinite subset $H$ such that every vertex of $G$ is adjacent to precisely none, one, or infinitely many vertices of $H$. We analyze the Rival-Sands theorem from the perspective of reverse mathematics and the Weihrauch degrees. In reverse mathematics, we find that the Rival-Sands theorem is equivalent to arithmetical comprehension and hence is stronger than Ramseys theorem for pairs. We also identify a weak form of the Rival-Sands theorem that is equivalent to Ramseys theorem for pairs. We turn to the Weihrauch degrees to give a finer analysis of the Rival-Sands theorems computational strength. We find that the Rival-Sands theorem is Weihrauch equivalent to the double jump of weak K{o}nigs lemma. We believe that the Rival-Sands theorem is the first natural theorem shown to exhibit exactly this strength. Furthermore, by combining our result with a result of Brattka and Rakotoniaina, we obtain that solving one instance of the Rival-Sands theorem exactly corresponds to simultaneously solving countably many instances of Ramseys theorem for pairs. Finally, we show that the uniform computational strength of the weak Rival-Sands theorem is weaker than that of Ramseys theorem for pairs by showing that a number of well-known consequences of Ramseys theorem for pairs do not Weihrauch reduce to the weak Rival-Sands theorem. We also address an apparent gap in the literature concerning the relationship between Weihrauch degrees corresponding to the ascending/descending sequence principle and the infinite pigeonhole principle.
48 - D. Lazzati 2005
After many years of speculation, recent observations have confirmed the association of gamma-ray bursts with core-collapse supernova explosions from massive stars. This association carries with it important consequences. The burst relativistic jet has to propagate through the cold dense stellar material before it reaches the transparency radius and the burst photons are produced. This propagation is likely to affect the initial properties of the jet, shaping it and changing its energy composition. The variability injected at the base of the jet is also likely to be erased by the jet-star interaction. Despite this, GRBs seem to have remarkably predictable properties once the radiative phase sets in, as emphasized by the recent discovery of several tight correlation between spectral, geometric and energetic properties of the jet. In this contribution we discuss the jet interaction with the star, emphasizing its time-dependent properties and the resulting energy distribution. We finally emphasize the surprising predictability of jet and radiation properties outside the star and underline its implication for standardizing the GRB candle.
103 - S. Grzedzielski 2010
The brightest and most surprising feature in the first all-sky maps of Energetic Neutral Atoms (ENA) emissions (0.2-6 keV) produced by the Interstellar Boundary Explorer (IBEX) is an almost circular ribbon of a ~140{deg} opening angle, centered at (l,b) = (33{deg}, 55{deg}), covering the part of the celestial sphere with the lowest column densities of the Local Interstellar Cloud (LIC). We propose a novel interpretation of the IBEX results based on the idea of ENA produced by charge-exchange between the neutral H atoms at the nearby edge of the LIC and the hot protons of the Local Bubble (LB). These ENAs can reach the Suns vicinity because of very low column density of the intervening LIC material. We show that a plane-parallel or slightly curved interface layer of contact between the LIC H atoms (n_H = 0.2 cm^-3, T = 6000-7000 K) and the LB protons (n_p = 0.005 cm^-3, T ~ 10^6 K), together with indirect contribution coming from multiply-scattered ENAs from the LB, may be able to explain both the shape of the ribbon and the observed intensities provided that the edge is < (500-2000) AU away, the LIC proton density is (correspondingly) < (0.04-0.01) cm^-3, and the LB contains ~1% of non-thermal protons over the IBEX energy range. If this model is correct, then IBEX, for the first time, has imaged in ENAs a celestial object from beyond the confines of the heliosphere and can directly diagnose the plasma conditions in the LB.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا