No Arabic abstract
We describe recent Chandra ACIS observations of the Vela-like pulsar PSR J2021+3651 and its pulsar wind nebula (PWN). This `Dragonfly Nebula displays an axisymmetric morphology, with bright inner jets, a double-ridged inner nebula, and a ~30 polar jet. The PWN is embedded in faint diffuse emission: a bow shock-like structure with standoff ~1 brackets the pulsar to the east and emission trails off westward for 3-4. Thermal (kT=0.16 +/-0.02 keV) and power law emission are detected from the pulsar. The nebular X-rays show spectral steepening from Gamma=1.5 in the equatorial torus to Gamma=1.9 in the outer nebula, suggesting synchrotron burn-off. A fit to the `Dragonfly structure suggests a large (86 +/-1 degree) inclination with a double equatorial torus. Vela is currently the only other PWN showing such double structure. The >12 kpc distance implied by the pulsar dispersion measure is not supported by the X-ray data; spectral, scale and efficiency arguments suggest a more modest 3-4 kpc.
PSR J2021+3651 is a 17 kyr old rotation powered pulsar detected in the radio, X-rays, and $gamma$-rays. It powers a torus-like pulsar wind nebula with jets, dubbed the Dragonfly, which is very similar to that of the Vela pulsar. The Dragonfly is likely associated with the extended TeV source VER J2019+368 and extended radio emission. We conducted first deep optical observations with the GTC in the Sloan $r$ band to search for optical counterparts of the pulsar and its nebula. No counterparts were detected down to $rgtrsim27.2$ and $gtrsim24.8$ for the point-like pulsar and the compact X-ray nebula, respectively. We also reanalyzed Chandra archival X-ray data taking into account an interstellar extinction--distance relation, constructed by us for the Dragonfly line of sight using the red-clump stars as standard candles. This allowed us to constrain the distance to the pulsar, $D=1.8^{+1.7}_{-1.4}$ kpc at 90% confidence. It is much smaller than the dispersion measure distance of $sim$12 kpc but compatible with a $gamma$-ray pseudo-distance of 1 kpc. Based on that and the optical upper limits, we conclude that PSR J2021+3651, similar to the Vela pulsar, is a very inefficient nonthermal emitter in the optical and X-rays, while its $gamma$-ray efficiency is consistent with an average efficiency for $gamma$-pulsars of similar age. Our optical flux upper limit for the pulsar is consistent with the long-wavelength extrapolation of its X-ray spectrum while the nebula flux upper limit does not constrain the respective extrapolation.
We present results from X-ray and radio observations of the recently discovered young Vela-like pulsar PSR J2021+3651, which is coincident with the EGRET gamma-ray source GeV 2020+3658. A 19.0-ks Chandra ACIS-S observation has revealed a ~20 x 10 pulsar wind nebula that is reminiscent of the equatorial tori seen around some young pulsars, along with thermal emission from an embedded point source (kT = 0.15 +/- 0.02 keV). We name the nebula G75.2+0.1. Its spectrum is well fit by an absorbed power-law model with photon index 1.7 +/- 0.3, hydrogen column density nH = 7.8 +/- 1.7 x 10^21 cm^-2, and an unabsorbed 0.3-10.0 keV flux of 1.9 +/- 0.3 x 10^-12 erg cm^-2 s^-1. We have spatially fit G75.2+0.1 with a model that assumes a toroidal morphology, and from this we infer that the torus is highly inclined 83 deg +/- 1 deg to the line of sight. A 20.8-ks Chandra observation in continuous-clocking mode reveals a possible pulse detection, with a pulsed fraction of ~37% and an H-test probability of occuring by chance of 1.2 x 10^-4. Timing observations with the Arecibo radio telescope spanning two years show that PSR J2021+3651 glitched sometime between MJDs 52616 and 52645 with parameters delta(v)/v = (2.587 +/- 0.002) x 10^-6 and delta(dot(v))/v = (6.2 +/- 0.3) x 10^-3, similar to those of the largest glitches observed in the Vela pulsar. PSR J2021+3651 is heavily scattered (T_sc = 17.7 ms +/- 0.9 ms at 1 GHz) and exhibits a significant amount of timing noise.
We report the probable identification of the X-ray counterpart to the gamma-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory ACIS and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20h21m30.733s, Decl. +40 deg 26 min 46.04sec (J2000) with an estimated uncertainty of 1.3 arsec combined statistical and systematic error. Moreover, both the X-ray to gamma-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray source has no cataloged infrared-to-visible counterpart and, through new observations, we set upper limits to its optical emission of i >23.0 mag and r > 25.2mag. The source exhibits an X-ray spectrum with most likely both a powerlaw and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.
The nearby, middle-aged PSR B1055-52 has many properties in common with the Geminga pulsar. Motivated by the Gemingas enigmatic and prominent pulsar wind nebula (PWN), we searched for extended emission around PSR B1055-52 with Chandra ACIS. For an energy range 0.3-1 keV, we found a 4 sigma flux enhancement in a 4.9-20 arcsec annulus around the pulsar. There is a slight asymmetry in the emission close, 1.5-4 arcsec, to the pulsar. The excess emission has a luminosity of about 10^{29} erg s^{-1} in an energy range 0.3-8 keV for a distance of 350 pc. Overall, the faint extended emission around PSR B1055-52 is consistent with a PWN of an aligned rotator moving away from us along the line of sight with supersonic velocity, but a contribution from a dust scattering halo cannot be excluded. Comparing the properties of other nearby, middle-aged pulsars, we suggest that the geometry -- the orientations of rotation axis, magnetic field axis, and the sight-line -- is the deciding factor for a pulsar to show a prominent PWN. For PSR B1055-52, we also report on a flux decrease of at least 30% between the 2000 XMM-Newton and our 2012 Chandra observation. We tentatively attribute this flux decrease to a cross-calibration problem, but further investigations of the pulsar are required to exclude actual intrinsic flux changes.
PSR B0656+14 is a middle-aged pulsar with a characteristic age $tau_c=110$ kyr and spin-down power $dot{E}= 3.8times 10^{34}$ erg s$^{-1}$. Using Chandra data, we searched for a pulsar wind nebula (PWN) and found evidence of extended emission in a 3.5-15 arcsec annulus around the pulsar, with a luminosity $L_{rm 0.5-8,keV}^{rm ext} sim 8times 10^{28}$ erg s$^{-1}$ (at the distance of 288 pc), which is a fraction of $sim 0.05$ of the non-thermal pulsar luminosity. If the extended emission is mostly due to a PWN, its X-ray efficiency, $eta_{rm pwn} = L_{rm 0.5-8,keV}^{rm ext}/dot{E} sim 2times 10^{-6}$, is lower than those of most other known PWNe but similar to that of the middle-aged Geminga pulsar. The small radial extent and nearly round shape of the putative PWN can be explained if the pulsar is receding (or approaching) in the direction close to the line of sight. The very soft spectrum of the extended emission ($Gammasim 8$), much softer than those of typical PWNe, could be explained by a contribution from a faint dust scattering halo, which may dominate in the outer part of the extended emission.