Do you want to publish a course? Click here

Coulomb interactions in single, charged self-assembled quantum dots: radiative lifetime and recombination energy

252   0   0.0 ( 0 )
 Added by Brian Gerardot
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results on the charge dependence of the radiative recombination lifetime, Tau, and the emission energy of excitons confined to single self-assembled InGaAs quantum dots. There are significant dot-to-dot fluctuations in the lifetimes for a particular emission energy. To reach general conclusions, we present the statistical behavior by analyzing data recorded on a large number of individual quantum dots. Exciton charge is controlled with extremely high fidelity through an n-type field effect structure, providing access to the neutral exciton (X0), the biexciton (2X0) and the positively (X1+) and negatively (X1-) charged excitons. We find significant differences in the recombination lifetime of each exciton such that, on average, Tau(X1-) / Tau(X0) = 1.25, Tau(X1+) / Tau(X0) = 1.58 and Tau(2X0) / Tau(X0) = 0.65. We attribute the change in lifetime to significant changes in the single particle hole wave function on charging the dot, an effect more pronounced on charging X0 with a single hole than with a single electron. We verify this interpretation by recasting the experimental data on exciton energies in terms of Coulomb energies. We show directly that the electron-hole Coulomb energy is charge dependent, reducing in value by 5-10% in the presence of an additional electron, and that the electron-electron and hole-hole Coulomb energies are almost equal.



rate research

Read More

We report semi-empirical pseudopotential calculations of emission spectra of charged excitons and biexcitons in CdSe nanocrystals. We find that the main emission peak of charged multiexcitons - originating from the recombination of an electron in an s-like state with a hole in an s-like state - is blue shifted with respect to the neutral mono exciton. In the case of the negatively charged biexciton, we observe additional emission peaks of lower intensity at higher energy, which we attribute to the recombination of an electron in a p state with a hole in a p state.
The radiative recombination rates of interacting electron-hole pairs in a quantum dot are strongly affected by quantum correlations among electrons and holes in the dot. Recent measurements of the biexciton recombination rate in single self-assembled quantum dots have found values spanning from two times the single exciton recombination rate to values well below the exciton decay rate. In this paper, a Feynman path-integral formulation is developed to calculate recombination rates including thermal and many-body effects. Using real-space Monte Carlo integration, the path-integral expressions for realistic three-dimensional models of InGaAs/GaAs, CdSe/ZnSe, and InP/InGaP dots are evaluated, including anisotropic effective masses. Depending on size, radiative rates of typical dots lie in the regime between strong and intermediate confinement. The results compare favorably to recent experiments and calculations on related dot systems. Configuration interaction calculations using uncorrelated basis sets are found to be severely limited in calculating decay rates.
We investigate the electronic structure of the InAs/InP quantum dots using an atomistic pseudopotential method and compare them to those of the InAs/GaAs QDs. We show that even though the InAs/InP and InAs/GaAs dots have the same dot material, their electronic structure differ significantly in certain aspects, especially for holes: (i) The hole levels have a much larger energy spacing in the InAs/InP dots than in the InAs/GaAs dots of corresponding size. (ii) Furthermore, in contrast with the InAs/GaAs dots, where the sizeable hole $p$, $d$ intra-shell level splitting smashes the energy level shell structure, the InAs/InP QDs have a well defined energy level shell structure with small $p$, $d$ level splitting, for holes. (iii) The fundamental exciton energies of the InAs/InP dots are calculated to be around 0.8 eV ($sim$ 1.55 $mu$m), about 200 meV lower than those of typical InAs/GaAs QDs, mainly due to the smaller lattice mismatch in the InAs/InP dots. (iii) The widths of the exciton $P$ shell and $D$ shell are much narrower in the InAs/InP dots than in the InAs/GaAs dots. (iv) The InAs/GaAs and InAs/InP dots have a reversed light polarization anisotropy along the [100] and [1$bar{1}$0] directions.
Epitaxial self-assembled quantum dots (SAQDs) represent an important step in the advancement of semiconductor fabrication at the nanoscale that will allow breakthroughs in electronics and optoelectronics. In these applications, order is a key factor. Here, the role of crystal anisotropy in promoting order during early stages of SAQD formation is studied through a linear analysis of a commonly used surface evolution model. Elastic anisotropy is used a specific example. It is found that there are two relevant and predictable correlation lengths. One of them is related to crystal anisotropy and is crucial for determining SAQD order. Furthermore, if a wetting potential is included in the model, it is found that SAQD order is enhanced when the deposited film is allowed to evolve at heights near the critical surface height for three-dimensional film growth.
Measuring single-electron charge is one of the most fundamental quantum technologies. Charge sensing, which is an ingredient for the measurement of single spins or single photons, has been already developed for semiconductor gate-defined quantum dots, leading to intensive studies on the physics and the applications of single-electron charge, single-electron spin and photon-electron quantum interface. However, the technology has not yet been realized for self-assembled quantum dots despite their fascinating quantum transport phenomena and outstanding optical functionalities. In this paper, we report charge sensing experiments in self-assembled quantum dots. We choose two adjacent dots, and fabricate source and drain electrodes on each dot, in which either dot works as a charge sensor for the other target dot. The sensor dot current significantly changes when the number of electrons in the target dot changes by one, demonstrating single-electron charge sensing. We have also demonstrated real-time detection of single-electron tunnelling events. This charge sensing technique will be an important step towards combining efficient electrical readout of single-electron with intriguing quantum transport physics or advanced optical and photonic technologies developed for self-assembled quantum dots.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا