Do you want to publish a course? Click here

A new approach for efficient simulation of Coulomb interactions in ionic fluids

142   0   0.0 ( 0 )
 Added by John D. Weeks
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a simplified version of local molecular field (LMF) theory to treat Coulomb interactions in simulations of ionic fluids. LMF theory relies on splitting the Coulomb potential into a short-ranged part that combines with other short-ranged core interactions and is simulated explicitly. The averaged effects of the remaining long-ranged part are taken into account through a self-consistently determined effective external field. The theory contains an adjustable length parameter sigma that specifies the cut-off distance for the short-ranged interaction. This can be chosen to minimize the errors resulting from the mean-field treatment of the complementary long-ranged part. Here we suggest that in many cases an accurate approximation to the effective field can be obtained directly from the equilibrium charge density given by the Debye theory of screening, thus eliminating the need for a self-consistent treatment. In the limit sigma -> 0, this assumption reduces to the classical Debye approximation. We examine the numerical performance of this approximation for a simple model of a symmetric ionic mixture. Our results for thermodynamic and structural properties of uniform ionic mixtures agree well with similar results of Ewald simulations of the full ionic system. In addition we have used the simplified theory in a grand-canonical simulation of a nonuniform ionic mixture where an ion has been fixed at the origin. Simulations using short-ranged truncations of the Coulomb interactions alone do not satisfy the exact condition of complete screening of the fixed ion, but this condition is recovered when the effective field is taken into account. We argue that this simplified approach can also be used in the simulations of more complex nonuniform systems.



rate research

Read More

We consider the stationary state of a fluid comprised of inelastic hard spheres or disks under the influence of a random, momentum-conserving external force. Starting from the microscopic description of the dynamics, we derive a nonlinear equation of motion for the coherent scattering function in two and three space dimensions. A glass transition is observed for all coefficients of restitution, epsilon, at a critical packing fraction, phi_c(epsilon), below random close packing. The divergence of timescales at the glass-transition implies a dependence on compression rate upon further increase of the density - similar to the cooling rate dependence of a thermal glass. The critical dynamics for coherent motion as well as tagged particle dynamics is analyzed and shown to be non-universal with exponents depending on space dimension and degree of dissipation.
Coulomb interactions are present in a wide variety of all-atom force fields. Spherical truncations of these interactions permit fast simulations but are problematic due to their incorrect thermodynamics. Herein we demonstrate that simple analytical corrections for the thermodynamics of uniform truncated systems are possible. In particular results for the SPC/E water model treated with spherically-truncated Coulomb interactions suggested by local molecular field theory [Proc. Nat. Acad. Sci. USA 105, 19136 (2008)] are presented. We extend results developed by Chandler [J. Chem. Phys. 65, 2925 (1976)] so that we may treat the thermodynamics of mixtures of flexible charged and uncharged molecules simulated with spherical truncations. We show that the energy and pressure of spherically-truncated bulk SPC/E water are easily corrected using exact second-moment-like conditions on long-ranged structure. Furthermore, applying the pressure correction as an external pressure removes the density errors observed by other research groups in NPT simulations of spherically-truncated bulk species.
108 - Derek Frydel , Manman Ma 2015
Using the adiabatic connection, we formulate the free energy in terms of the correlation function of a fictitious system, $h_{lambda}({bf r},{bf r})$, where $lambda$ determines the interaction strength. To obtain $h_{lambda}({bf r},{bf r})$ we use the Ornstein-Zernike equation, and the two equations constitute a general liquid-state framework for treating inhomogeneous fluids. As the two equations do not form a closed set, an approximate closure relation is required and it determines a type of an approximation. In the present work we investigate the random phase approximation (RPA) closure. We determine that this approximation is identical to the variational Gaussian approximation derived within the framework of the field-theory. We then apply our generalized RPA approximation to the Gaussian core model and Coulomb charges.
According to extensive experimental findings, the Ginzburg temperature $t_{G}$ for ionic fluids differs substantially from that of nonionic fluids [Schroer W., Weig{a}rtner H. 2004 {it Pure Appl. Chem.} {bf 76} 19]. A theoretical investigation of this outcome is proposed here by a mean field analysis of the interplay of short and long range interactions on the value of $t_{G}$. We consider a quite general continuous charge-asymmetric model made of charged hard spheres with additional short-range interactions (without electrostatic interactions the model belongs to the same universality class as the 3D Ising model). The effective Landau-Ginzburg Hamiltonian of the full system near its gas-liquid critical point is derived from which the Ginzburg temperature is calculated as a function of the ionicity. The results obtained in this way for $t_{G}$ are in good qualitative and sufficient quantitative agreement with available experimental data.
Pressure is the mechanical force per unit area that a confined system exerts on its container. In thermal equilibrium, it depends only on bulk properties (density, temperature, etc.) through an equation of state. Here we show that in a wide class of active systems the pressure depends on the precise interactions between the active particles and the confining walls. In general, therefore, active fluids have no equation of state, their mechanical pressures exhibit anomalous properties that defy the familiar thermodynamic reasoning that holds in equilibrium. The pressure remains a function of state, however, in some specific and well-studied active models that tacitly restrict the character of the particle-wall and/or particle-particle interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا