All-optical trapping and acceleration of heavy particles


Abstract in English

A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum is proposed, in which two counterpropagating lasers with variable frequencies drive a beat-wave structure with variable phase velocity, thus allowing for trapping and acceleration of heavy particles, such as ions or muons. Fine control over the energy distribution and the total charge of the beam is obtained via tuning of the frequency variation. The acceleration scheme is described with a one-dimensional theory, providing the general conditions for trapping and scaling laws for the relevant features of the particle beam. Two-dimensional, electromagnetic particle-in-cell simulations confirm the validity and the robustness of the physical mechanism.

Download