No Arabic abstract
Anyons are particlelike excitations of strongly correlated phases of matter with fractional statistics, characterized by nontrivial changes in the wave function, generalizing Bose and Fermi statistics, when two of them are interchanged. This can be used to perform quantum computations [A. Yu. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003)]. We show how to simulate the creation and manipulation of Abelian and non- Abelian anyons in topological lattice models using trapped atoms in optical lattices. Our proposal, feasible with present technology, requires an ancilla particle which can undergo single-particle gates, be moved close to each constituent of the lattice and undergo a simple quantum gate, and be detected.
We consider a class of decoding algorithms that are applicable to error correction for both Abelian and non-Abelian anyons. This class includes multiple algorithms that have recently attracted attention, including the Bravyi-Haah RG decoder. They are applied to both the problem of single shot error correction (with perfect syndrome measurements) and that of active error correction (with noisy syndrome measurements). For Abelian models we provide a threshold proof in both cases, showing that there is a finite noise threshold under which errors can be arbitrarily suppressed when any decoder in this class is used. For non-Abelian models such a proof is found for the single shot case. The means by which decoding may be performed for active error correction of non-Abelian anyons is studied in detail. Differences with the Abelian case are discussed.
Topological systems, such as fractional quantum Hall liquids, promise to successfully combat environmental decoherence while performing quantum computation. These highly correlated systems can support non-Abelian anyonic quasiparticles that can encode exotic entangled states. To reveal the non-local character of these encoded states we demonstrate the violation of suitable Bell inequalities. We provide an explicit recipe for the preparation, manipulation and measurement of the desired correlations for a large class of topological models. This proposal gives an operational measure of non-locality for anyonic states and it opens up the possibility to violate the Bell inequalities in quantum Hall liquids or spin lattices.
In this work we present an optical lattice setup to realize a full Dirac Hamiltonian in 2+1 dimensions. We show how all possible external potentials coupled to the Dirac field can arise from perturbations of the existing couplings of the honeycomb lattice model, without the need of additional laser fields. This greatly simplifies the proposed implementations, requiring only spatial modulations of the intensity of the laser beams. We finally suggest several experiments to observe the properties of the Dirac field in the setup.
In this paper, we report on the study of Abelian and non-Abelian statistics through Fabry-Perot interferometry of fractional quantum Hall (FQH) systems. Our detection of phase slips in quantum interference experiments demonstrates a powerful, new way of detecting braiding of anyons. We confirm the Abelian anyonic braiding statistics in the $ u = 7/3$ FQH state through detection of the predicted statistical phase angle of $2pi/3$, consistent with a change of the anyonic particle number by one. The $ u = 5/2$ FQH state is theoretically believed to harbor non-Abelian anyons which are Majorana, meaning that each pair of quasiparticles contain a neutral fermion orbital which can be occupied or unoccupied and hence can act as a qubit. In this case our observed statistical phase slips agree with a theoretical model where the Majoranas are strongly coupled to each other, and strongly coupled to the edge modes of the interferometer. In particular, an observed phase slip of approximately $pi$ is interpreted as a sudden flip of a qubit, or entry of a neutral fermion into the interferometer. Our results provide compelling support for the existence of non-Abelian anyons.
We explore vorton solutions in the Wittens $U(1) times U(1)$ model for cosmic strings and in a modified version $U(1) times SO(3)$ obtained by introducing a triplet of non-Abelian fields to condense inside the string. We restrict to the case in which the unbroken symmetry in the bulk remains global. The vorton solutions are found numerically for certain choices of parameters and compared with an analytical solutions obtained in the thin vorton limit. We also discuss the vorton decay into Q-rings (or spinning Q-balls) and, to some extent, the time dependent behavior of vortons above the charge threshold.