No Arabic abstract
We revisit the classical problem of a polymer confined in a slit in both of its static and dynamic aspects. We confirm a number of well known scaling predictions and analyse their range of validity by means of comprehensive Molecular Dynamics simulations using a coarse-grained bead-spring model of a flexible polymer chain. The normal and parallel components of the average end-to-end distance, mean radius of gyration and their distributions, the density profile, the force exerted on the slit walls, and the local bond orientation characteristics are obtained in slits of width $D$ = $4 div 10$ (in units of the bead radius) and for chain lengths $N=50 div 300$. We demonstrate that a wide range of static chain properties in normal direction can be described {em quantitatively} by analytic model - independent expressions in perfect agreement with computer experiment. In particular, the observed profile of confinement-induced bond orientation, is shown to closely match theory predictions. The anisotropy of confinement is found to be manifested most dramatically in the dynamic behavior of the polymer chain. We examine the relation between characteristic times for translational diffusion and lateral relaxation. It is demonstrated that the scaling predictions for lateral and normal relaxation times are in good agreement with our observations. A novel feature is the observed coupling of normal and lateral modes with two vastly different relaxation times. We show that the impact of grafting on lateral relaxation is equivalent to doubling the chain length.
We suggest a theoretical description of the force-induced translocation dynamics of a polymer chain through a nanopore. Our consideration is based on the tensile (Pincus) blob picture of a pulled chain and the notion of propagating front of tensile force along the chain backbone, suggested recently by T. Sakaue. The driving force is associated with a chemical potential gradient that acts on each chain segment inside the pore. Depending on its strength, different regimes of polymer motion (named after the typical chain conformation, trumpet, stem-trumpet, etc.) occur. Assuming that the local driving and drag forces are equal (i.e., in a quasi-static approximation), we derive an equation of motion for the tensile front position $X(t)$. We show that the scaling law for the average translocation time $<tau>$ changes from $<tau> sim N^{2 u}/f^{1/ u}$ to $<tau> sim N^{1+ u}/f$ (for the free-draining case) as the dimensionless force ${widetilde f}_{R} = a N^{ u}f /T$ (where $a$, $N$, $ u$, $f$, $T$ are the Kuhn segment length, the chain length, the Flory exponent, the driving force, and the temperature, respectively) increases. These and other predictions are tested by Molecular Dynamics (MD) simulation. Data from our computer experiment indicates indeed that the translocation scaling exponent $alpha$ grows with the pulling force ${widetilde f}_{R}$) albeit the observed exponent $alpha$ stays systematically smaller than the theoretically predicted value. This might be associated with fluctuations which are neglected in the quasi-static approximation.
We examine the phase transition of polymer adsorption as well as the underlying kinetics of polymer binding from dilute solutions on a structureless solid surface. The emphasis is put on the properties of regular multiblock copolymers, characterized by block size M and total length N as well as on random copolymers with quenched composition p of sticky and neutral segments. The macromolecules are modeled as coarse-grained bead-spring chains subject to a short-ranged surface adhesive potential. Phase diagrams, showing the variation of the critical threshold for single chain adsorption in terms of M and p are derived from scaling considerations in agreement with results from computer experiment. Using both scaling analysis and numerical data from solving a system of coupled Master equations, we demonstrate that the phase behavior at criticality, and the adsorption kinetics may be adequately predicted and understood, in agreement with the results of extensive Monte Carlo simulations. Derived analytic expressions for the mean fraction of adsorbed segments as well as for Probability Distribution Functions of the various structural building blocks (i.e., trains, loops, tails) at time t during the chain attachment process are in good agreement with our numeric experiments and provide insight into the mechanism of polymer adsorption.
The increased energy and power density required in modern electronics poses a challenge for designing new dielectric polymer materials with high energy density while maintaining low loss at high applied electric fields. Recently, an advanced computational screening method coupled with hierarchical modelling has accelerated the identification of promising high energy density materials. It is well known that the dielectric response of polymeric materials is largely influenced by their phases and local heterogeneous structures as well as operational temperature. Such inputs are crucial to accelerate the design and discovery of potential polymer candidates. However, an efficient computational framework to probe temperature dependence of the dielectric properties of polymers, while incorporating effects controlled by their morphology is still lacking. In this paper, we propose a scalable computational framework based on reactive molecular dynamics with a valence-state aware polarizable charge model, which is capable of handling practically relevant polymer morphologies and simultaneously provide near-quantum accuracy in estimating dielectric properties of various polymer systems. We demonstrate the predictive power of our framework on high energy density polymer systems recently identified through rational experimental-theoretical co-design. Our scalable and automated framework may be used for high-throughput theoretical screenings of combinatorial large design space to identify next-generation high energy density polymer materials.
We present the exact solutions of various directed walk models of polymers confined to a slit and interacting with the walls of the slit via an attractive potential. We consider three geometric constraints on the ends of the polymer and concentrate on the long chain limit. Apart from the general interest in the effect of geometrical confinement this can be viewed as a two-dimensional model of steric stabilization and sensitized flocculation of colloidal dispersions. We demonstrate that the large width limit admits a phase diagram that is markedly different from the one found in a half-plane geometry, even when the polymer is constrained to be fixed at both ends on one wall. We are not able to find a closed form solution for the free energy for finite width, at all values of the interaction parameters, but we can calculate the asymptotic behaviour for large widths everywhere in the phase plane. This allows us to find the force between the walls induced by the polymer and hence the regions of the plane where either steric stabilization or sensitized flocculation would occur.
We report self-assembly and phase transition behavior of lower diamondoid molecules and their primary derivatives using molecular dynamic (MD) simulation and density functional theory (DFT) calculations. Two lower diamondoids (adamantane and diamantane), three adamantane derivatives (amantadine, memantine and rimantadine) and two artificial molecules (Adamantane+Na and Diamantane+Na) are studied separately in 125-molecule simulation systems. We performed DFT calculations to optimize their molecular geometries and obtain atomic electronic charges for the corresponding MD simulation, by which we obtained self-assembly structures and simulation trajectories for the seven molecules. Radial distribution functions and structure factors studies showed clear phase transitions for the seven molecules.