No Arabic abstract
Bonazzola, Gourgoulhon, Grandclement, and Novak [Phys. Rev. D {bf 70}, 104007 (2004)] proposed a new formulation for 3+1 numerical relativity. Einstein equations result, according to that formalism, in a coupled elliptic-hyperbolic system. We have carried out a preliminary analysis of the mathematical structure of that system, in particular focusing on the equations governing the evolution for the deviation of a conformal metric from a flat fiducial one. The choice of a Diracs gauge for the spatial coordinates guarantees the mathematical characterization of that system as a (strongly) hyperbolic system of conservation laws. In the presence of boundaries, this characterization also depends on the boundary conditions for the shift vector in the elliptic subsystem. This interplay between the hyperbolic and elliptic parts of the complete evolution system is used to assess the prescription of inner boundary conditions for the hyperbolic part when using an excision approach to black hole spacetime evolutions.
We present a symmetric hyperbolic formulation of the Einstein equations in affine-null coordinates. Giannakopoulos et. al. (arXiv:2007.06419) recently showed that the most commonly numerically implemented formulations of the Einstein equations in affine-null coordinates (and other single-null coordinate systems) are only weakly-but not strongly-hyperbolic. By making use of the tetrad-based Newman-Penrose formalism, our formulation avoids the hyperbolicity problems of the formulations investigated by Giannakopoulos et. al. We discuss a potential application of our formulation for studying gravitational wave scattering.
We present in this paper a 4-dimensional formulation of the Newton equations for gravitation on a Lorentzian manifold, inspired from the 1+3 and 3+1 formalisms of general relativity. We first show that the freedom on the coordinate velocity of a general time-parametrised coordinate system with respect to a Galilean reference system is similar to the shift freedom in the 3+1-formalism of general relativity. This allows us to write Newtons theory as living in a 4-dimensional Lorentzian manifold $M^N$. This manifold can be chosen to be curved depending on the dynamics of the Newtonian fluid. In this paper, we focus on a specific choice for $M^N$ leading to what we call the textit{1+3-Newton equations}. We show that these equations can be recovered from general relativity with a Newtonian limit performed in the rest frames of the relativistic fluid. The 1+3 formulation of the Newton equations along with the Newtonian limit we introduce also allow us to define a dictionary between Newtons theory and general relativity. This dictionary is defined in the rest frames of the dust fluid, i.e. a non-accelerating observer. A consequence of this is that it is only defined for irrotational fluids. As an example supporting the 1+3-Newton equations and our dictionary, we show that the parabolic free-fall solution in 1+3-Newton exactly translates into the Schwarzschild spacetime, and this without any approximations. The dictionary might then be an additional tool to test the validity of Newtonian solutions with respect to general relativity. It however needs to be further tested for non-vacuum, non-stationary and non-isolated Newtonian solutions, as well as to be adapted for rotational fluids. One of the main applications we consider for the 1+3 formulation of Newtons equations is to define new models suited for the study of backreaction and global topology in cosmology.
Discontinuous Galerkin Finite Element (DGFE) methods offer a mathematically beautiful, computationally efficient, and efficiently parallelizable way to solve hyperbolic partial differential equations. These properties make them highly desirable for numerical calculations in relativistic astrophysics and many other fields. The BSSN formulation of the Einstein equations has repeatedly demonstrated its robustness. The formulation is not only stable but allows for puncture-type evolutions of black hole systems. To-date no one has been able to solve the full (3+1)-dimensional BSSN equations using DGFE methods. This is partly because DGFE discretization often occurs at the level of the equations, not the derivative operator, and partly because DGFE methods are traditionally formulated for manifestly flux-conservative systems. By discretizing the derivative operator, we generalize a particular flavor of DGFE methods, Local DG methods, to solve arbitrary second-order hyperbolic equations. Because we discretize at the level of the derivative operator, our method can be interpreted as either a DGFE method or as a finite differences stencil with non-constant coefficients.
We adopt a reference-metric approach to generalize a covariant and conformal version of the Z4 system of the Einstein equations. We refer to the resulting system as ``fully covariant and conformal, or fCCZ4 for short, since it is well suited for curvilinear as well as Cartesian coordinates. We implement this fCCZ4 formalism in spherical polar coordinates under the assumption of spherical symmetry using a partially-implicit Runge-Kutta (PIRK) method and show that our code can evolve both vacuum and non-vacuum spacetimes without encountering instabilities. Our method does not require regularization of the equations to handle coordinate singularities, nor does it depend on constraint-preserving outer boundary conditions, nor does it need any modifications of the equations for evolutions of black holes. We perform several tests and compare the performance of the fCCZ4 system, for different choices of certain free parameters, with that of BSSN. Confirming earlier results we find that, for an optimal choice of these parameters, and for neutron-star spacetimes, the violations of the Hamiltonian constraint can be between 1 and 3 orders of magnitude smaller in the fCCZ4 system than in the BSSN formulation. For black-hole spacetimes, on the other hand, any advantages of fCCZ4 over BSSN are less evident.
We compute the Hamiltonian for spherically symmetric scalar field collapse in Einstein-Gauss-Bonnet gravity in D dimensions using slicings that are regular across future horizons. We first reduce the Lagrangian to two dimensions using spherical symmetry. We then show that choosing the spatial coordinate to be a function of the areal radius leads to a relatively simple Hamiltonian constraint whose gravitational part is the gradient of the generalized mass function. Next we complete the gauge fixing such that the metric is the Einstein-Gauss-Bonnet generalization of non-static Painleve-Gullstrand coordinates. Finally, we derive the resultant reduced equations of motion for the scalar field. These equations are suitable for use in numerical simulations of spherically symmetric scalar field collapse in Gauss-Bonnet gravity and can readily be generalized to other matter fields minimally coupled to gravity.