Do you want to publish a course? Click here

Dangerous Angular KK/Glueball Relics in String Theory Cosmology

97   0   0.0 ( 0 )
 Added by Lev Kofman
 Publication date 2008
  fields Physics
and research's language is English
 Authors J.F. Dufaux




Ask ChatGPT about the research

The presence of Kaluza-Klein particles in the universe is a potential manifestation of string theory cosmology. In general, they can be present in the high temperature bath of the early universe. In particular examples, string theory inflation often ends with brane-antibrane annihilation followed by the energy cascading through massive closed string loops to KK modes which then decay into lighter standard model particles. However, massive KK modes in the early universe may become dangerous cosmological relics if the inner manifold contains warped throat(s) with approximate isometries. In the complimentary picture, in the AdS/CFT dual gauge theory with extra symmetries, massive glueballs of various spins become the dangerous cosmological relics. The decay of these angular KK modes/glueballs, located around the tip of the throat, is caused by isometry breaking which results from gluing the throat to the compact CY manifold. We address the problem of these angular KK particles/glueballs, studying their interactions and decay channels, from the theory side, and the resulting cosmological constraints on the warped compactification parameters, from the phenomenology side. The abundance and decay time of the long-lived non-relativistic angular KK modes depend strongly on the parameters of the warped geometry, so that observational constraints rule out a significant fraction of the parameter space. In particular, the coupling of the angular KK particles can be weaker than gravitational.



rate research

Read More

248 - Eva Silverstein 2017
We comment on the relation between string theory and empirical science, grounding our discussion in cosmology, a subject with increasingly precise data in which this connection operates at several levels. It is important to take into account the phenomenon of dangerous irrelevance: over long times or large field ranges, physics can become sensitive to higher scales than the input energies. This pertains in inflationary cosmology (and possibly other aspects of horizon physics). String theory also contributes to our understanding of observational constraints and search strategies at the level of low energy field theory. We illustrate this with a current example concerning a new form of non-Gaussianity generated by very massive degrees of freedom coupling to the inflaton. New constraints on such fields and couplings can be obtained from existing data, increasing our empirical knowledge of the universe. This builds in part from the development of the string landscape, which is neither random nor an abdication of science as has sometimes been suggested. {it Invited contribution to the proceedings of the conference `Why trust a theory.}
In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikely. In particular, the duality symmetries of string theory suggest scenarios in which the Universe starts inflating from an initial state characterized by very small curvature and interactions. Such a state, being gravitationally unstable, will evolve towards higher curvature and coupling, until string-size effects and loop corrections make the Universe bounce into a standard, decreasing-curvature regime. In such a context, the hot big bang of conventional cosmology is replaced by a hot big bounce in which the bouncing and heating mechanisms originate from the quantum production of particles in the high-curvature, large-coupling pre-bounce phase. Here we briefly summarize the main features of this inflationary scenario, proposed a quarter century ago. In its simplest version (where it represents an alternative and not a complement to standard slow-roll inflation) it can produce a viable spectrum of density perturbations, together with a tensor component characterized by a blue spectral index with a peak in the GHz frequency range. That means, phenomenologically, a very small contribution to a primordial B-mode in the CMB polarization, and the possibility of a large enough stochastic background of gravitational waves to be measurable by present or future gravitational wave detectors.
We perform an extensive analysis of the statistics of axion masses and interactions in compactifications of type IIB string theory, and we show that black hole superradiance excludes some regions of Calabi-Yau moduli space. Regardless of the cosmological model, a theory with an axion whose mass falls in a superradiant band can be probed by the measured properties of astrophysical black holes, unless the axion self-interaction is large enough to disrupt formation of a condensate. We study a large ensemble of compactifications on Calabi-Yau hypersurfaces, with $1 leq h^{1,1} leq 491$ closed string axions, and determine whether the superradiance conditions on the masses and self-interactions are fulfilled. The axion mass spectrum is largely determined by the Kahler parameters, for mild assumptions about the contributing instantons, and takes a nearly-universal form when $h^{1,1} gg 1$. When the Kahler moduli are taken at the tip of the stretched Kahler cone, the fraction of geometries excluded initially grows with $h^{1,1}$, to a maximum of $approx 0.5$ at $h^{1,1} approx 160$, and then falls for larger $h^{1,1}$. Further inside the Kahler cone, the superradiance constraints are far weaker, but for $h^{1,1} gg 100$ the decay constants are so small that these geometries may be in tension with astrophysical bounds, depending on the realization of the Standard Model.
The First and Second Swampland Conjectures (FSC & SSC) are substantially modified in non-critical string cosmology, in which cosmic time is identified with the time-like Liouville mode of the supercritical string. In this scenario the Friedmann equation receives additional contributions due to the non-criticality of the string. These are potentially important when one seeks to apply the Bousso bound for the entropy of states that may become light as the dilaton takes on trans-Planckian values, as in a de Sitter phase, and restore consistency with the FSC and in at least some cases also the SSC. The weak gravity conjecture (WGC) for scalar potentials is saturated in the supercritical string scenarios discussed in this work, but only if one uses the dilaton as appears in the string effective action, with a kinetic term that is not canonically normalised. In the case of a non-critical Starobinsky potential, the WGC is satisfied by both the canonically-normalised dilaton and the dilaton used in the string effective action.
A generic feature of the known string inflationary models is that the same physics that makes the inflaton lighter than the Hubble scale during inflation often also makes other scalars this light. These scalars can acquire isocurvature fluctuations during inflation, and given that their VEVs determine the mass spectrum and the coupling constants of the effective low-energy field theory, these fluctuations give rise to couplings and masses that are modulated from one Hubble patch to another. These seem just what is required to obtain primordial adiabatic fluctuations through conversion into density perturbations through the `modulation mechanism, wherein reheating takes place with different efficiency in different regions of our Universe. Fluctuations generated in this way can generically produce non-gaussianity larger than obtained in single-field slow-roll inflation; potentially observable in the near future. We provide here the first explicit example of the modulation mechanism at work in string cosmology, within the framework of LARGE Volume Type-IIB string flux compactifications. The inflationary dynamics involves two light Kaehler moduli: a fibre divisor plays the role of the inflaton whose decay rate to visible sector degrees of freedom is modulated by the primordial fluctuations of a blow-up mode (which is made light by the use of poly-instanton corrections). We find the challenges of embedding the mechanism into a concrete UV completion constrains the properties of the non-gaussianity that is found, since for generic values of the underlying parameters, the model predicts a local bi-spectrum with fNL of order `a few. However, a moderate tuning of the parameters gives also rise to explicit examples with fNL O(20) potentially observable by the Planck satellite.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا