X-ray spectral variability in PG1535+547: the changing-look of a soft X-ray weak AGN


Abstract in English

PG1535+547 is a bright NLS1 galaxy, whose high energy emission shows strong variability in shape and flux. ROSAT data classified it as soft X-ray weak QSO (objects whose X-ray-to-optical flux ratio is smaller than in typical QSO): their X-ray spectra are often characterized by highly ionized, complex absorbers and/or reflection from the disk, whose relative importance is currently debated. In both cases, the presence of such features implies that we are looking at matter located in the innermost regions of the AGN. In this paper we want to clarify the nature of the X-ray emission of PG1535+547, and constrain the physical properties of regions where the emission originates. We present new XMM observations, from which we obtained 2 spectra separated by about 1 week, that we compare with a previous XMM observation. The data support the complex and variable nature of the X-ray emission. The broad band flux increases by a factor ~2.3 in 3 years, and then decreases by a factor ~1.3 in about 1 week. In the new EPIC spectra strong absorption features at E<3keV and a complex spectral shape in the Fe line energy range are evident, coupled with a drop in the emission at higher energies. We describe all the states assuming either a warm absorber plus a relativistically blurred ionized reflection, or a two-phase warm absorber partially covering the source plus a scattered component. The variability is ascribed to the warm absorbers, that vary their physical properties on timescales of years and days. In the reflection scenario all the states require a high fraction of reflection. The strong variability in the X-ray band opposed to a more constant optical emission implies that PG1535+547 can not actually be classified as a soft X-ray weak AGN.

Download