Do you want to publish a course? Click here

Small angle neutron scattering study of the step-like magnetic transformation in Pr0.70Ca0.30MnO3

88   0   0.0 ( 0 )
 Added by Charles Simon
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Small angle neutron scattering (SANS) magnetic and electrical transport measurements were performed to study a single crystal of Pr0.7Ca0.3MnO3, a colossal magnetoresistive (CMR) material. While the magnetic field induced transformation of this phase separated compound consisting of an antiferromagnetic insulating phase (AFI) and a ferromagnetic insulating phase (FI), is continuous at high temperature (above 5K), at lower temperature a step like transformation is observed (around 5T at 2K). Macroscopic magnetization measurements and SANS indicate that this transformation occurs by the formation of mesoscopic ferromagnetic metallic (FM) domains in the AFI phase, and, eventually, in the FI phase. Although above 5K this transformation is continuous, below 5K a magnetization step marks the abrupt transition from a large scale FI/AFI phase separation to a large scale phase separation between AFI, FI and FM phases. Our results suggest that relaxation of elastic strains inherent to the coexistence of these different phases plays a crucial role in the mechanism of these transformations. The occurrence of magnetization steps could result from an intrinsic behavior of the AFI phase at low temperature.

rate research

Read More

We employ magnetic small-angle neutron scattering to investigate the magnetic interactions in $(Fe_{0.7}Ni_{0.3})_{86}B_{14}$ alloy, a HiB-NANOPERM-type soft magnetic nanocrystalline material, which exhibits an ultrafine microstructure with an average grain size below 10 nm. The neutron data reveal a significant spin-misalignment scattering, which is mainly related to the jump of the longitudinal magnetization at internal particle-matrix interfaces. The field dependence of the neutron data can be well described by the micromagnetic small-angle neutron scattering theory. In particular, the theory explains the clover-leaf-type angular anisotropy observed in the purely magnetic neutron scattering cross section. The presented neutron-data analysis also provides access to the magnetic interaction parameters, such as the exchange-stiffness constant, which plays a crucial role towards the optimization of the magnetic softness of Fe-based nanocrystalline materials.
We present studies of the magnetic field distribution around the vortices in LuNi2B2C. Small-angle neutron scattering measurements of the vortex lattice (VL) in this material were extended to unprecedentedly large values of the scattering vector q, obtained both by using high magnetic fields to decrease the VL spacing and by using higher order reflections. A square VL, oriented with the nearest neighbor direction along the crystalline [110] direction, was observed up to the highest measured field. The first-order VL form factor, |F(q10)|, was found to decrease exponentially with increasing magnetic field. Measurements of the higher order form factors, |F(qhk)|, reveal a significant in-plane anisotropy and also allow for a real-space reconstruction of the VL field distribution.
We present a comprehensive small angle neutron scattering study of the doping dependence of the helimagnetic correlations in Mn$_{1-x}$Fe$_{x}$Si. The long-range helimagnetic order in Mn$_{1-x}$Fe$_x$Si is suppressed with increasing Fe content and disappears for $x$ $>$ $x^*$ $approx$ 0.11, i.e. well before $x_C$ $approx$ 0.17 where the transition temperature vanishes. For $x$ $>$ $x^*$, only finite isotropic helimagnetic correlations persist which bear similarities with the magnetic correlations found in the precursor phase of MnSi. Magnetic fields gradually suppress and partly align these short-ranged helimagnetic correlations along their direction through a complex magnetization process.
Triblock terpolymers exhibit a rich self-organization behavior including the formation of fascinating cylindrical core-shell structures with a phase separated corona. After crystallization-induced self-assembly of polystryrene-(block)-polyethylene-(block)-poly(methyl methacrylate) triblock terpolymers (abbreviated as SEMs = Styrene-Ethylene-Methacrylates) from solution, worm-like core-shell micelles with a patchy corona of polystryrene and poly(methyl methacrylate) were observed by transmission electron microscopy. However, the solution structure is still a matter of debate. Here, we present a method to distinguish in-situ between a Janus-type (two faced) and a patchy (multiple compartments) configuration of the corona. To discriminate between both models the scattering intensity must be determined mainly by one corona compartment. Contrast variation in small-angle neutron scattering enables us to focus on one compartment of the SEMs. The results validate the existence of the patchy structure also in solution.
We have evidenced by small angle neutron scattering at low temperature the coexistence of ferromagnetism (F) and antiferromagnetism (AF) in Pr0.67Ca0.33MnO3. The results are compared to those obtained in Pr0.80Ca0.20MnO3 and Pr0.63Ca0.37MnO3, which are F and AF respectively. Quantitative analysis shows that the small angle scattering is not due to a mesoscopic mixing but to a nanoscopic electronic and magnetic red cabbage structure, in which the ferromagnetic phase exists in form of thin layers in the AF matrix (stripes or 2D sheets).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا