Do you want to publish a course? Click here

Excitation energy map of the high-energy dispersion anomalies in cuprates

169   0   0.0 ( 0 )
 Added by Dmytro Inosov
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The anomalous high-energy dispersion of the conductance band in the high-Tc superconductor Pb-Bi2212 has been extensively mapped by angle-resolved photoemission (ARPES) as a function of excitation energy in the range from 34 to 116 eV. Two distinctive types of dispersion behavior are observed around 0.6 eV binding energy, which alternate as a function of photon energy. The continuous transitions observed between the two kinds of behavior near 50, 70, and 90 eV photon energies allow to exclude the possibility that they originate from the interplay between the bonding and antibonding bands. The effects of three-dimensionality can also be excluded as a possible origin of the excitation energy dependence, as the large period of the alterations is inconsistent with the lattice constant in this material. We therefore confirm that the strong photon energy dependence of the high-energy dispersion in cuprates originates mainly from the photoemission matrix element that suppresses the photocurrent in the center of the Brillouin zone.



rate research

Read More

329 - L. Dudy , A. Krapf , H. Dwelk 2010
We report characterization results by energy dispersive x-ray analysis and AC-susceptibility for a statistically relevant number of single layer Bi-cuprate single crystals. We show that the two structurally quite different modifications of the single-layered Bi-cuprate, namely (La,Pb=0.4)-Bi2201 and La-Bi2201, exhibit anomalies in the superconducting transition temperature at certain hole doping, e.g. at 1/8 holes per Cu. These doping values agree well with the magic doping fractions found in the temperature dependent resistance of LSCO by Komiya et al. This new set of findings suggests that all these anomalies are generic for the hole-doped high-temperature superconductors.
120 - P. Aynajian , T. Keller , L. Boeri 2008
The momentum and temperature dependence of the lifetimes of acoustic phonons in the elemental superconductors Pb and Nb was determined by resonant spin-echo spectroscopy with neutrons. In both elements, the superconducting energy gap extracted from these measurements was found to converge with sharp anomalies originating from Fermi-surface nesting (Kohn anomalies) at low temperatures. The results indicate electron many-body correlations beyond the standard theoretical framework for conventional superconductivity. A possible mechanism is the interplay between superconductivity and spin- or charge-density-wave fluctuations, which may induce dynamical nesting of the Fermi surface.
238 - M. Kofu , T. Yokoo , F. Trouw 2007
We performed inelastic neutron experiments on underdoped La_2-xSr_xCuO_4(x=0.10, T_c=28.6K) using a time-of-flight neutron scattering technique. Four incommensurate peaks on the two-dimensional reciprocal plane disperse inwards toward an antiferromagnetic zone center as the energy increases. These peaks merge into a single peak at an energy E_cross around w=40+-3meV. Beyond E_cross, the peak starts to broaden and ``hourglass-like excitations are observed. The E_cross in the underdoped sample is smaller than that reported for the optimally doped La_1.84Sr_0.16CuO_4. The reduction of the E_cross is explained by the doping-independent slope of the downward dispersion below the E_cross combined with the smaller incommensurability in the underdoped sample. In the energy spectrum of chi(w), we observed a similar peak-dip-hump structure in the energy region of 10~45meV to that reported for the optimally doped sample. We discuss the relation between the hourglass-shaped dispersion and the peak-dip-hump energy spectrum.
The pursuit of a comprehensive understanding of the dynamical nature of intertwined orders in quantum matter has fueled the development of several new experimental techniques, including time- and angle-resolved photoemission spectroscopy (TR-ARPES). In this regard, the study of copper-oxide high-temperature superconductors, prototypical quantum materials, has furthered both the technical advancement of the experimental technique, as well as the understanding of their correlated dynamical properties. Here, we provide a brief historical overview of the TR-ARPES investigations of cuprates, and review what specific information can be accessed via this approach. We then present a detailed discussion of the transient evolution of the low-energy spectral function both along the gapless nodal direction and in the near-nodal superconducting gap region, as probed by TR-ARPES on Bi-based cuprates.
Magnetic excitation spectra c(q,w) of YBa2Cu3Oy and La214 systems have been studied. For La1.88Sr0.12CuO4, c(q,w) have been measured up to ~30 meV and existing data have been analyzed up to the energy w~150 meV by using the phenomenological expression of the generalized magnetic susceptibility c(q,w)=c0(q,w)/{1+J(q)c0(q,w)}, where c0(q,w) is the susceptibility of the electrons without the exchange coupling J(q) among them. In the relatively low energy region up to slightly above the resonance energy Er, it has been reported by the authors group that the expression can explain characteristics of the q- and w-dependence of the spectra of YBa2Cu3Oy (YBCO or YBCOy). Here, it is also pointed out that the expression can reproduce the rotation of four incommensurate peaks of c(q,w) within the a*-b* plane about (p/a, p/a) {or so-called (p, p)} point by 45 degree, which occurs as w goes to the energy region far above Er from E below Er. For La2-xSrxCuO4 and La2-xBaxCuO4, agreements between the observed results and the calculations are less satisfactory than for YBCO, indicating that we have to take account of the existence of the stripes to consistently explain the observed c(q,w) of La214 system especially near x=1/8.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا