Do you want to publish a course? Click here

Separating surface magnetic effects in sunspot seismology: new time-distance helioseismic diagnostics

268   0   0.0 ( 0 )
 Added by Paul Rajaguru
 Publication date 2008
  fields Physics
and research's language is English
 Authors S.P. Rajaguru




Ask ChatGPT about the research

Time-distance helioseismic measurements in surface- and deep-focus geometries for wave-paths that distinguish surface magnetic contributions from those due to deeper perturbations beneath a large sunspot are presented and analysed. Travel times showing an increased wave speed region extending down to about 18 Mm beneath the spot are detected in deep-focus geometry that largely avoids use of wave field within the spot. Direction (in- or out-going wave) and surface magnetic field (or focus depth) dependent changes in frequency dependence of travel times are shown and identified to be signatures of wave absorption and conversion in near surface layers rather than that of shallowness of sunspot induced perturbations.



rate research

Read More

46 - S.P. Rajaguru 2006
We show that the use of Doppler shifts of Zeeman sensitive spectral lines to observe wavesn in sunspots is subject to measurement specific phase shifts arising from, (i) altered height range of spectral line formation and the propagating character of p mode waves in penumbrae, and (ii) Zeeman broadening and splitting. We also show that these phase shifts depend on wave frequencies, strengths and line of sight inclination of magnetic field, and the polarization state used for Doppler measurements. We discuss how these phase shifts could contribute to local helioseismic measurements of surface effects in sunspot seismology.
Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases. It is well accepted that both the plasma density and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult since the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9-55 G. A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 +/- 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.
108 - S. P. Rajaguru 2012
The effects of acoustic wave absorption, mode conversion and transmission by a sunspot on the helioseismic inferences are widely discussed, but yet accounting for them has proved difficult for lack of a consistent framework within helioseismic modelling. Here, following a discussion of problems and issues that the near-surface magnetohydrodynamics hosts through a complex interplay of radiative transfer, measurement issues, and MHD wave processes, I present some possibilities entirely from observational analyses based on imaging spectropolarimetry. In particular, I present some results on wave evolution as a function of observation height and inclination of magnetic field to the vertical, derived from a high-cadence imaging spectropolarimetric observation of a sunspot and its surroundings using the instrument IBIS (NSO/Sac Peak, USA). These observations were made in magnetically sensitive (Fe I 6173 A) and insensitive (Fe I 7090 A) upper photospheric absorption lines. Wave travel time contributions from within the photospheric layers of a sunspot estimated here would then need to be removed from the inversion modelling procedure, that does not have the provision to account for them.
349 - S.P. Rajaguru TIFR 2015
We present and discuss results from time-distance helioseismic measurements of meridional circulation in the solar convection zone using 4 years of Doppler velocity observations by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Using an in-built mass conservation constraint in terms of the stream function we invert helioseismic travel times to infer meridional circulation in the solar convection zone. We find that the return flow that closes the meridional circulation is possibly beneath the depth of $0.77 R_{odot}$. We discuss the significance of this result in relation to other helioseismic inferences published recently and possible reasons for the differences in the results. Our results show clearly the pitfalls involved in the measurements of material flows in the deep solar interior given the current limits on signal-to-noise and our limited understanding of systematics in the data. We also discuss the implications of our results for the dynamics of solar interior and popular solar dynamo models.
237 - S.P. Rajaguru 2010
Using a high cadence imaging spectropolarimetric observation of a sunspot and its surroundings in magnetically sensitive (FeI 6173 A) and insensitive (FeI 7090 A) upper photospheric absorption lines, we map the instantaneous wave phases and helioseismic travel times as a function of observation height and inclination of magnetic field to the vertical. We confirm the magnetic inclination angle dependent transmission of incident acoustic waves into upward propagating waves, and derive (1) proof that helioseismic travel times receive direction dependent contributions from such waves and hence cause errors in conventional flow inferences, (2) evidences for acoustic wave sources beneath the umbral photosphere, and (3) significant differences in travel times measured from the chosen magnetically sensitive and insensitive spectral lines.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا