One-parameter family of discrete-time quantum-walk models on the square lattice, which includes the Grover-walk model as a special case, is analytically studied. Convergence in the long-time limit $t to infty$ of all joint moments of two components of walkers pseudovelocity, $X_t/t$ and $Y_t/t$, is proved and the probability density of limit distribution is derived. Dependence of the two-dimensional limit density function on the parameter of quantum coin and initial four-component qudit of quantum walker is determined. Symmetry of limit distribution on a plane and localization around the origin are completely controlled. Comparison with numerical results of direct computer-simulations is also shown.