No Arabic abstract
This paper proposes new symmetries (the body-centred cubic periodic symmetries) beyond the standard model. Using a free particle expanded Schrodinger equation with the body-centred cubic periodic symmetry condition, the paper deduces a full baryon spectrum (including mass M, I, S, C, B, Q, J and P) of all 116 observed baryons. All quantum numbers of all deduced baryons are completely consistent with the corresponding experimental results. The deduced masses of all 116 baryons agree with (more than average 98 percent) the experimental baryon masses using only four constant parameters. The body-centred cubic periodic symmetries with a periodic constant ``a about $10^{-23}$m play a crucial rule. The results strongly suggest that the new symmetries really exist. This paper predicts some kind of ``Zeeman effect of baryons, for example: one experimental baryon N(1720)${3/2}^{+}$ with $ Gamma$ = 200 Mev is composed of two N baryons [(N(1659)${3/2}^{+}$ + N(1839)${3/2}^{+}$] = $bar{N(1749)}$${3/2}^{+}$ with $Gamma$ = 1839-1659 = 180 Mev.
This White Paper describes recent progress and future opportunities in the area of fundamental symmetries and neutrinos.
This is a historical account from my personal perspective of the development over the last few decades of the standard model of particle physics. The model is based on gauge theories, of which the first was quantum electrodynamics, describing the interactions of electrons with light. This was later incorporated into the electroweak theory, describing electromagnetic and weak nuclear interactions. The standard model also includes quantum chromodynamics, the theory of the strong nuclear interactions. The final capstone of the model was the Higgs particle discovered in 2012 at CERN. But the model is very far from being the last word; there are still many gaps in our understanding.
We review our expectations in the last year before the LHC commissioning.
The Fermi effective theory of the weak interaction helped identify the structure of the electroweak sector of the Standard Model, and the chiral effective Lagrangian pointed towards QCD as the theory of the strong interactions. The Standard Model Effective Field Theory (SMEFT) is a systematic and model-independent framework for characterizing experimental deviations from the predictions of the Standard Model and pointing towards the structures of its possible extensions that is complementary to direct searches for new physics beyond the Standard Model. This talk summarizes results from the first global fit to data from LHC Run 2 and earlier experiments including dimension-6 SMEFT operators, and gives examples how it can be used to constrain scenarios for new physics beyond the Standard Model. In addition, some windows for probing dimension-8 SMEFT operators are also mentioned.
We review pedagogically non-Abelian discrete groups, which play an important role in the particle physics. We show group-theoretical aspects for many concrete groups, such as representations, their tensor products. We explain how to derive, conjugacy classes, characters, representations, and tensor products for these groups (with a finite number). We discussed them explicitly for $S_N$, $A_N$, $T$, $D_N$, $Q_N$, $Sigma(2N^2)$, $Delta(3N^2)$, $T_7$, $Sigma(3N^3)$ and $Delta(6N^2)$, which have been applied for model building in the particle physics. We also present typical flavor models by using $A_4$, $S_4$, and $Delta (54)$ groups. Breaking patterns of discrete groups and decompositions of multiplets are important for applications of the non-Abelian discrete symmetry. We discuss these breaking patterns of the non-Abelian discrete group, which are a powerful tool for model buildings. We also review briefly about anomalies of non-Abelian discrete symmetries by using the path integral approach.