Do you want to publish a course? Click here

Binary Black Hole Encounters, Gravitational Bursts and Maximum Final Spin

148   0   0.0 ( 0 )
 Added by Pablo Laguna
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spin of the final black hole in the coalescence of nonspinning black holes is determined by the ``residual orbital angular momentum of the binary. This residual momentum consists of the orbital angular momentum that the binary is not able to shed in the process of merging. We study the angular momentum radiated, the spin of the final black hole and the gravitational bursts in a series of orbits ranging from almost direct infall to numerous orbits before infall that exhibit multiple bursts of radiation in the merger process. We show that the final black hole gets a maximum spin parameter $a/M_h le 0.78$, and this maximum occurs for initial orbital angular momentum $L approx M^2_h$.



rate research

Read More

We present results on the mass and spin of the final black hole from mergers of equal mass, spinning black holes. The study extends over a broad range of initial orbital configurations, from direct plunges to quasi-circular inspirals to more energetic orbits (generalizations of Newtonian elliptical orbits). It provides a comprehensive search of those configurations that maximize the final spin of the remnant black hole. We estimate that the final spin can reach a maximum spin $a/M_h approx 0.99pm 0.01$ for extremal black hole mergers. In addition, we find that, as one increases the orbital angular momentum from small values, the mergers produce black holes with mass and spin parameters $lbrace M_h/M, a/M_h rbrace$ ~spiraling around the values $lbrace hat M_h/M, hat a/M_h rbrace$ of a {it golden} black hole. Specifically, $(M_h-hat M_h)/M propto e^{pm B,phi}cos{phi}$ and $(a-hat a)/M_h propto e^{pm C,phi}sin{phi}$, with $phi$ a monotonically growing function of the initial orbital angular momentum. We find that the values of the parameters for the emph{golden} black hole are those of the final black hole obtained from the merger of a binary with the corresponding spinning black holes in a quasi-circular inspiral.
We present results from fully nonlinear simulations of unequal mass binary black holes plunging from close separations well inside the innermost stable circular orbit with mass ratios q = M_1/M_2 = {1,0.85,0.78,0.55,0.32}, or equivalently, with reduced mass parameters $eta=M_1M_2/(M_1+M_2)^2 = {0.25, 0.248, 0.246, 0.229, 0.183}$. For each case, the initial binary orbital parameters are chosen from the Cook-Baumgarte equal-mass ISCO configuration. We show waveforms of the dominant l=2,3 modes and compute estimates of energy and angular momentum radiated. For the plunges from the close separations considered, we measure kick velocities from gravitational radiation recoil in the range 25-82 km/s. Due to the initial close separations our kick velocity estimates should be understood as a lower bound. The close configurations considered are also likely to contain significant eccentricities influencing the recoil velocity.
Generic inspirals and mergers of binary black holes produce beamed emission of gravitational radiation that can lead to a gravitational recoil or kick of the final black hole. The kick velocity depends on the mass ratio and spins of the binary as well as on the dynamics of the binary configuration. Studies have focused so far on the most astrophysically relevant configuration of quasi-circular inspirals, for which kicks as large as 3,300 km/s have been found. We present the first study of gravitational recoil in hyperbolic encounters. Contrary to quasi-circular configurations, in which the beamed radiation tends to average during the inspiral, radiation from hyperbolic encounters is plunge dominated, resulting in an enhancement of preferential beaming. As a consequence, it is possible to achieve kick velocities as large as 10,000 km/s.
We apply machine learning methods to build a time-domain model for gravitational waveforms from binary black hole mergers, called mlgw. The dimensionality of the problem is handled by representing the waveforms amplitude and phase using a principal component analysis. We train mlgw on about $mathcal{O}(10^3)$ TEOBResumS and SEOBNRv4 effective-one-body waveforms with mass ratios $qin[1,20]$ and aligned dimensionless spins $sin[-0.80,0.95]$. The resulting models are faithful to the training sets at the ${sim}10^{-3}$ level (averaged on the parameter space). The speed up for a single waveform generation is a factor 10 to 50 (depending on the binary mass and initial frequency) for TEOBResumS and approximately an order of magnitude more for SEOBNRv4. Furthermore, mlgw provides a closed form expression for the waveform and its gradient with respect to the orbital parameters; such an information might be useful for future improvements in GW data analysis. As demonstration of the capabilities of mlgw to perform a full parameter estimation, we re-analyze the public data from the first GW transient catalog (GWTC-1). We find broadly consistent results with previous analyses at a fraction of the cost, although the analysis with spin aligned waveforms gives systematic larger values of the effective spins with respect to previous analyses with precessing waveforms. Since the generation time does not depend on the length of the signal, our model is particularly suitable for the analysis of the long signals that are expected to be detected by third-generation detectors. Future applications include the analysis of waveform systematics and model selection in parameter estimation.
Gravitational waves emitted during the merger of two black holes carry information about the remnant black hole, namely its mass and spin. This information is typically found from the ringdown radiation as the black hole settles to a final state. We find that the remnant black hole spin is already known at the peak amplitude of the gravitational wave strain. Using this knowledge, we present a new method for measuring the final spin that is template independent, using only the chirp mass, the instantaneous frequency of the strain and its derivative at maximum amplitude, all template independent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا