Do you want to publish a course? Click here

On Maximizing Coverage in Gaussian Relay Networks

152   0   0.0 ( 0 )
 Added by Vaneet Aggarwal
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

Results for Gaussian relay channels typically focus on maximizing transmission rates for given locations of the source, relay and destination. We introduce an alternative perspective, where the objective is maximizing coverage for a given rate. The new objective captures the problem of how to deploy relays to provide a given level of service to a particular geographic area, where the relay locations become a design parameter that can be optimized. We evaluate the decode and forward (DF) and compress and forward (CF) strategies for the relay channel with respect to the new objective of maximizing coverage. When the objective is maximizing rate, different locations of the destination favor different strategies. When the objective is coverage for a given rate, and the relay is able to decode, DF is uniformly superior in that it provides coverage at any point served by CF. When the channel model is modified to include random fading, we show that the monotone ordering of coverage regions is not always maintained. While the coverage provided by DF is sensitive to changes in the location of the relay and the path loss exponent, CF exhibits a more graceful degradation with respect to such changes. The techniques used to approximate coverage regions are new and may be of independent interest.



rate research

Read More

79 - Simin Xu , Nan Yang , Biao He 2019
We propose a novel analytical framework for evaluating the coverage performance of a millimeter wave (mmWave) cellular network where idle user equipments (UEs) act as relays. In this network, the base station (BS) adopts either the direct mode to transmit to the destination UE, or the relay mode if the direct mode fails, where the BS transmits to the relay UE and then the relay UE transmits to the destination UE. To address the drastic rotational movements of destination UEs in practice, we propose to adopt selection combining at destination UEs. New expression is derived for the signal-to-interference-plus-noise ratio (SINR) coverage probability of the network. Using numerical results, we first demonstrate the accuracy of our new expression. Then we show that ignoring spatial correlation, which has been commonly adopted in the literature, leads to severe overestimation of the SINR coverage probability. Furthermore, we show that introducing relays into a mmWave cellular network vastly improves the coverage performance. In addition, we show that the optimal BS density maximizing the SINR coverage probability can be determined by using our analysis.
In this paper, we study the problem of optimal topology design in wireless networks equipped with highly-directional transmission antennas. We use the 1-2-1 network model to characterize the optimal placement of two relays that assist the communication between a source-destination pair. We analytically show that under some conditions on the distance between the source-destination pair, the optimal topology in terms of maximizing the network throughput is to place the relays as close as possible to the source and the destination.
We consider a multipair two-way relay communication network, where pairs of user devices exchange information via a relay system. The communication between users employs time division duplex, with all users transmitting simultaneously to relays in one time slot and relays sending the processed information to all users in the next time slot. The relay system consists of a large number of single antenna units that can form groups. Within each group, relays exchange channel state information (CSI), signals received in the uplink and signals intended for downlink transmission. On the other hand, per-group CSI and uplink/downlink signals (data) are not exchanged between groups, which perform the data processing completely independently. Assuming that the groups perform zero-forcing in both uplink and downlink, we derive a lower bound for the ergodic sumrate of the described system as a function of the relay group size. By close observation of this lower bound, it is concluded that the sumrate is essentially independent of group size when the group size is much larger than the number of user pairs. This indicates that a very large group of cooperating relays can be substituted by a number of smaller groups, without incurring any significant performance reduction. Moreover, this result implies that relay cooperation is more efficient (in terms of resources spent on cooperation) when several smaller relay groups are used in contrast to a single, large group.
In this paper we study the relay-interference wireless network, in which relay (helper) nodes are to facilitate competing information flows over a wireless network. We examine this in the context of a deterministic wireless interaction model, which eliminates the channel noise and focuses on the signal interactions. Using this model, we show that almost all the known schemes such as interference suppression, interference alignment and interference separation are necessary for relay-interference networks. In addition, we discover a new interference management technique, which we call interference neutralization, which allows for over-the-air interference removal, without the transmitters having complete access the interfering signals. We show that interference separation, suppression, and neutralization arise in a fundamental manner, since we show complete characterizations for special configurations of the relay-interference network.
This paper deals with the problem of multicasting a set of discrete memoryless correlated sources (DMCS) over a cooperative relay network. Necessary conditions with cut-set interpretation are presented. A emph{Joint source-Wyner-Ziv encoding/sliding window decoding} scheme is proposed, in which decoding at each receiver is done with respect to an ordered partition of other nodes. For each ordered partition a set of feasibility constraints is derived. Then, utilizing the sub-modular property of the entropy function and a novel geometrical approach, the results of different ordered partitions are consolidated, which lead to sufficient conditions for our problem. The proposed scheme achieves operational separation between source coding and channel coding. It is shown that sufficient conditions are indeed necessary conditions in two special cooperative networks, namely, Aref network and finite-field deterministic network. Also, in Gaussian cooperative networks, it is shown that reliable transmission of all DMCS whose Slepian-Wolf region intersects the cut-set bound region within a constant number of bits, is feasible. In particular, all results of the paper are specialized to obtain an achievable rate region for cooperative relay networks which includes relay networks and two-way relay networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا