Do you want to publish a course? Click here

Drift effects and the cosmic ray density gradient in a solar rotation period: First observation with the Global Muon Detector Network (GMDN)

114   0   0.0 ( 0 )
 Added by Kazuoki Munakata
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present for the first time hourly variations of the spatial density gradient of 50 GeV cosmic rays within a sample solar rotation period in 2006. By inversely solving the transport equation, including diffusion, we deduce the gradient from the anisotropy that is derived from the observation made by the Global Muon Detector Network (GMDN). The anisotropy obtained by applying a new analysis method to the GMDN data is precise and free from atmospheric temperature effects on the muon count rate recorded by ground based detectors. We find the derived north-south gradient perpendicular to the ecliptic plane is oriented toward the Helioshperic Current Sheet (HCS) (i.e. southward in the toward sector of the Interplanetary Magnetic Field (IMF) and northward in the away sector). The orientation of the gradient component parallel to the ecliptic plane remains similar in both sectors with an enhancement of its magnitude seen after the Earth crosses the HCS. These temporal features are interpreted in terms of a local maximum of the cosmic ray density at the HCS. This is consistent with the prediction of the drift model for the $A<0$ epoch. By comparing the observed gradient with the numerical prediction of a simple drift model, we conclude that particle drifts in the large-scale magnetic field play an important role in organizing the density gradient, at least in the present $A<0$ epoch. We also found that corotating interaction regions did not have such a notable effect. Observations with the GMDN provide us with a new tool for investigating cosmic ray transport in the IMF.



rate research

Read More

We deduce on hourly basis the spatial gradient of the cosmic ray density in three dimensions from the directional anisotropy of high-energy (~50 GeV) galactic cosmic ray (GCR) intensity observed with a global network of muon detectors on the Earths surface. By analyzing the average features of the gradient in the corotational interaction regions (CIRs) recorded in successive two solar activity minimum periods, we find that the observed latitudinal gradient (Gz) changes its sign from negative to positive on the Earths heliospheric current sheet (HCS) crossing from the northern to the southern hemisphere in A<0 epoch, while it changes from positive to negative in A>0 epoch. This is in accordance with the drift prediction. We also find a negative enhancement in Gx after the HCS crossing in both A<0 and A>0 epochs, but not in Gy. This asymmetrical feature of Gx and Gy indicates significant contributions from the parallel and perpendicular diffusions to the the gradient in CIRs in addition to the contribution from the drift effect.
115 - W. Kihara , K. Munakata , C. Kato 2021
We demonstrate that global observations of high-energy cosmic rays contribute to understanding unique characteristics of a large-scale magnetic flux rope causing a magnetic storm in August 2018. Following a weak interplanetary shock on 25 August 2018, a magnetic flux rope caused an unexpectedly large geomagnetic storm. It is likely that this event became geoeffective because the flux rope was accompanied by a corotating interaction region and compressed by high-speed solar wind following the flux rope. In fact, a Forbush decrease was observed in cosmic-ray data inside the flux rope as expected, and a significant cosmic-ray density increase exceeding the unmodulated level before the shock was also observed near the trailing edge of the flux rope. The cosmic-ray density increase can be interpreted in terms of the adiabatic heating of cosmic rays near the trailing edge of the flux rope, as the corotating interaction region prevents free expansion of the flux rope and results in the compression near the trailing edge. A northeast-directed spatial gradient in the cosmic-ray density was also derived during the cosmic-ray density increase, suggesting that the center of the heating near the trailing edge is located northeast of Earth. This is one of the best examples demonstrating that the observation of high-energy cosmic rays provides us with information that can only be derived from the cosmic ray measurements to observationally constrain the three-dimensional macroscopic picture of the interaction between coronal mass ejections and the ambient solar wind, which is essential for prediction of large magnetic storms.
Cosmic rays are charged particles whose flux observed at Earth shows temporal variations related to space weather phenomena and may be an important tool to study them. The cosmic ray intensity recorded with ground-based detectors also shows temporal variations arising from atmospheric variations. In the case of muon detectors, the main atmospheric effects are related to pressure and temperature changes. In this work, we analyze both effects using data recorded by the Global Muon Detector Network (GMDN), consisting of four multidirectional muon detectors at different locations, in the period between 2007 and 2016. For each GMDN directional channel, we obtain coefficients that describe the pressure and temperature effects. We then analyze how these coefficients can be related to the geomagnetic cutoff rigidity and zenith angle associated with cosmic-ray particles observed by each channel. In the pressure effect analysis, we found that the observed barometric coefficients show a very clear logarithmic correlation with the cutoff rigidity divided by the zenith angle cosine. On the other hand, the temperature coefficients show a good logarithmic correlation with the product of the cutoff and zenith angle cosine after adding a term proportional to the sine of geographical latitude of the observation site. This additional term implies that the temperature effect measured in the northern hemisphere detectors is stronger than that observed in the southern hemisphere. The physical origin of this term and of the good correlations found in this analysis should be studied in detail in future works.
The OPERA experiment discovered muon neutrino into tau neutrino oscillations in appearance mode, detecting tau leptons by means of nuclear emulsion films. The apparatus was also endowed with electronic detectors with tracking capability, such as scintillator strips and resistive plate chambers. Because of its location, in the underground Gran Sasso laboratory, under 3800 m.w.e., the OPERA detector has also been used as an observatory for TeV muons produced by cosmic rays in the atmosphere. In this paper the measurement of the single muon flux modulation and of its correlation with the seasonal variation of the atmospheric temperature are reported.
105 - Yan Liu , Weidong Li , Tao Lin 2021
The Jiangmen Underground Neutrino Observatory (JUNO) is designed to determine the neutrino mass ordering and measure neutrino oscillation parameters. A precise muon reconstruction is crucial to reduce one of the major backgrounds induced by cosmic muons. This article proposes a novel muon reconstruction method based on convolutional neural network (CNN) models. In this method, the track information reconstructed by the top tracker is used for network training. The training dataset is augmented by applying a rotation to muon tracks to compensate for the limited angular coverage of the top tracker. The muon reconstruction with the CNN model can produce unbiased tracks with performance that spatial resolution is better than 10 cm and angular resolution is better than 0.6 degrees. By using a GPU accelerated implementation a speedup factor of 100 compared to existing CPU techniques has been demonstrated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا