Photoabsorption cross sections and gamma-decay strength function are calculated and compared with experimental data to test the existing models of dipole radiative strength functions (RSF) for the middle-weight and heavy atomic nuclei. Simplified version of the modified Lorentzian model are proposed. New tables of giant dipole resonance (GDR) parameters are given. It is shown that the phenomenological closed-form models with asymmetric shape can be used for overall estimates of the dipole RSF in the gamma -ray energy region up to about 20 MeV when GDR parameters are known or the GDR systematics can be adopted. Otherwise, the HFB-QRPA microscopic model and the semi-classical approach with moving surface appear to be more adequate methods to estimate the dipole photoabsorption RSF.
The closed-form expressions for the photon strength functions (PSF) are tested using the gamma-decay data of OSLO group. The theoretical calculations are performed for the Lorentzian models of PSF for electric and magnetic dipole gamma-rays. The criteria of minimum of least-square value as well as the root-mean-square deviation factor are used. It is shown that a rather good agreement is obtained within the Simple Modified Lorentzian model for E1 PSF modelling.
The isovector dipole E1 strength in Mo isotopes with A=92,94,96,98,100 is analyzed within the self-consistent separable random-phase approximation (SRPA) model with Skyrme forces SkT6, SkM*, SLy6, and SkI3. The special attention is paid to the low-energy region near the particle thresholds (4-12 MeV), which is important for understanding of astrophysical processes. We show that, due to a compensation effect, the influence of nuclear deformation on E1 strength below 10-12 MeV is quite modest. At the same time, in agreement with previous predictions, the deformation increases the strength at higher energy. At 4-8 MeV the strength is mainly determined by the tail of E1 giant resonance. The four Skyrme forces differ in description of the whole giant resonance but give rather similar results below 12 MeV.
The experimental $E1$ strength distribution below 4 MeV in rare-earth nuclei suggests a local breaking of isospin symmetry. In addition to the octupole states, additional $1^-$ states with enhanced E1 strength have been observed in rare-earth nuclei by means of ($gamma,gamma$) experiments. By reproducing the experimental results, the spdf interacting boson model calculations provide further evidence for the formation of an $alpha$ cluster in medium-mass nuclei and might provide a new understanding of the origin of low-lying E1 strength.
The semiclassical method for description of the radiative strength function is used for asymmetric nuclei with $N e Z$. The theory is based on the linearized Vlasov-Landau equations in two-component finite Fermi liquid. The dependence of the shape $E1$ strength on the coupling constant between proton and neutron subsystems was studied.