Large Qudit Limit of One-dimensional Quantum Walks


Abstract in English

We study a series of one-dimensional discrete-time quantum-walk models labeled by half integers $j=1/2, 1, 3/2, ...$, introduced by Miyazaki {it et al.}, each of which the walkers wave function has $2j+1$ components and hopping range at each time step is $2j$. In long-time limit the density functions of pseudovelocity-distributions are generally given by superposition of appropriately scaled Konnos density function. Since Konnos density function has a finite open support and it diverges at the boundaries of support, limit distribution of pseudovelocities in the $(2j+1)$-component model can have $2j+1$ pikes, when $2j+1$ is even. When $j$ becomes very large, however, we found that these pikes vanish and a universal and monotone convex structure appears around the origin in limit distributions. We discuss a possible route from quantum walks to classical diffusion associated with the $j to infty$ limit.

Download