Variation of the geometrical and electronic properties of the gold materials in different dimensions has been investigated by $ab$ $initio$ method, taking into account the spin-orbit (SO) interaction. It is found that SO effects in different dimensional Au materials depend greatly on fundamental symmetry and dimensionality. For single walled gold nanotubes (SWGNTs), SO interaction decreases significantly the conducting channel number of achiral SWGNT (4, 0), and leads to spin splitting at Fermi level of chiral SWGNT, indicating that quasi-1D SWGNT can be a good candidate for the spin-electron devices. Furthermore, our results suggest that cage cluster might be synthesizable experimentally by taking gold tube structure as parent material.