Do you want to publish a course? Click here

Interaction of hydrogen molecules with superconducting nanojunctions

112   0   0.0 ( 0 )
 Added by Andras Halbritter
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper the interaction of hydrogen molecules with atomic-sized superconducting nanojunctions is studied. It is demonstrated by conductance histogram measurements that the superconductors niobium, tantalum and aluminum show a strong interaction with hydrogen, whereas for lead a slight interaction is observed, and for tin and indium no significant interaction is detectable. For Nb, Ta and Pb subgap method is applied to determine the transmission eigenvalues of the nanojunctions in hydrogen environment. It is shown, that in Nb and Ta the mechanical behavior of the junction is spectacularly influenced by hydrogen reflected by extremely long conductance traces, but the electronic properties based on the transmission eigenvalues are similar to those of pure junctions. Evidences for the formation of a single-molecule bridge between the electrodes -- as in recently studied platinum hydrogen system -- were not found.



rate research

Read More

Ion beam therapy is one of the most progressive methods in cancer treatment. Studies of the water radiolysis process show that the most long-living species that occur in the medium of a biological cell under the action of ionizing irradiation are hydrogen peroxide (H$_2$O$_2$) molecules. But the role of H$_2$O$_2$ molecules in the DNA deactivation of cancer cells in ion beam therapy has not been determined yet. In the present paper, the competitive interaction of hydrogen peroxide and water molecules with atomic groups of non-specific DNA recognition sites (phosphate groups PO$_4$) is investigated. The interaction energies and optimized spatial configurations of the considered molecular complexes are calculated with the help of molecular mechanics method and quantum chemistry approach. The results show that the H$_2$O$_2$ molecule can form a complex with the PO$_4$ group (with and without a sodium counterion) that is more energetically stable than the same complex with the water molecule. Formation of such complexes can block genetic information transfer processes in cancer cells and can be an important factor during ion beam therapy treatment.
Results of an experimental study of palladium nanojunctions in hydrogen environment are presented. Two new hydrogen-related atomic configurations are found, which have a conductances of ~0.5 and ~1 quantum unit (2e^2/h). Phonon spectrum measurements demonstrate that these configurations are situated between electrodes containing dissolved hydrogen. The crucial differences compared to the previously studied Pt-H_2 junctions, and the possible microscopic realizations of the new configurations in palladium-hydrogen atomic-sized contacts are discussed.
We use scanning tunneling microscopy to visualize and thermal desorption spectroscopy to quantitatively measure that the binding of naphthalene molecules to graphene (Gr), a case of pure van der Waals (vdW) interaction, strengthens with $n$- and weakens with $p$-doping of Gr. Density functional theory calculations that include the vdW interaction in a seamless, ab initio way accurately reproduce the observed trend in binding energies. Based on a model calculation, we propose that the vdW interaction is modified by changing the spatial extent of Grs $pi$ orbitals via doping.
We investigate theoretically the spin-spin interaction of two-electrons in vertically coupled QDs as a function of the angle between magnetic field and growth axis. Our numerical approach is based on a real-space description of single-particle states in realistic samples and exact diagonalization of carrier-carrier Coulomb interaction. In particular, the effect of the in-plane field component on tunneling and, therefore, spin-spin interaction will be discussed; the singlet-triplet phase diagram as a function of the field strength and direction is drawn.
We study the tunneling transport through a nanojunction in the far-from-equilibrium regime at relatively low temperatures. We show that the current-voltage characteristics is significantly modified as compared to the usual quasi-equilibrium result by lifting the suppression due to the Coulomb blockade. These effects are important in realistic nanojunctions. We study the high-impedance case in detail to explain the underlying physics and construct a more realistic theoretical model for the case of a metallic junction taking into account dynamic Coulomb interaction. This dynamic screening further reduces the effect of the Coulomb blockade.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا