Do you want to publish a course? Click here

Local geometry of the G2 moduli space

105   0   0.0 ( 0 )
 Added by Sergey Grigorian
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We consider deformations of torsion-free G2 structures, defined by the G2-invariant 3-form $phi$ and compute the expansion of the Hodge star of $phi$ to fourth order in the deformations of $phi$. By considering M-theory compactified on a G2 manifold, the G2 moduli space is naturally complexified, and we get a Kahler metric on it. Using the expansion of the Hodge star of $phi$ we work out the full curvature of this metric and relate it to the Yukawa coupling.



rate research

Read More

We study the moduli space volume of BPS vortices in quiver gauge theories on compact Riemann surfaces. The existence of BPS vortices imposes constraints on the quiver gauge theories. We show that the moduli space volume is given by a vev of a suitable cohomological operator (volume operator) in a supersymmetric quiver gauge theory, where BPS equations of the vortices are embedded. In the supersymmetric gauge theory, the moduli space volume is exactly evaluated as a contour integral by using the localization. Graph theory is useful to construct the supersymmetric quiver gauge theory and to derive the volume formula. The contour integral formula of the volume (generalization of the Jeffrey-Kirwan residue formula) leads to the Bradlow bounds (upper bounds on the vorticity by the area of the Riemann surface divided by the intrinsic size of the vortex). We give some examples of various quiver gauge theories and discuss properties of the moduli space volume in these theories. Our formula are applied to the volume of the vortex moduli space in the gauged non-linear sigma model with $CP^N$ target space, which is obtained by a strong coupling limit of a parent quiver gauge theory. We also discuss a non-Abelian generalization of the quiver gauge theory and Abelianization of the volume formula.
167 - Alastair Hamilton 2007
In this paper we show that the homology of a certain natural compactification of the moduli space, introduced by Kontsevich in his study of Wittens conjectures, can be described completely algebraically as the homology of a certain differential graded Lie algebra. This two-parameter family is constructed by using a Lie cobracket on the space of noncommutative 0-forms, a structure which corresponds to pinching simple closed curves on a Riemann surface, to deform the noncommutative symplectic geometry described by Kontsevich in his subsequent papers.
We show that the moduli space of regular affine vortices, which are solutions of the symplectic vortex equation over the complex plane, has the structure of a smooth manifold. The construction uses Zilteners Fredholm theory results [31]. We also extend the result to the case of affine vortices over the upper half plane. These results are necessary ingredients in defining the open quantum Kirwan map proposed by Woodward [24].
Harmonic maps that minimise the Dirichlet energy in their homotopy classes are known as lumps. Lump solutions on real projective space are explicitly given by rational maps subject to a certain symmetry requirement. This has consequences for the behaviour of lumps and their symmetries. An interesting feature is that the moduli space of charge three lumps is a $7$-dimensional manifold of cohomogeneity one which can be described as a one-parameter family of symmetry orbits of $D_2$ symmetric maps. In this paper, we discuss the charge three moduli spaces of lumps from two perspectives: discrete symmetries of lumps and the Riemann-Hurwitz formula. We then calculate the metric and find explicit formulas for various geometric quantities. We also discuss the implications for lump decay.
We investigate the distribution of field theories that arise from the low energy limit of flux vacua built on type IIB string theory compactified on the mirror quintic. For a large collection of these models, we numerically determine the distribution of Taylor coefficients in a polynomial expansion of each models scalar potential to fourth order, and show that they differ significantly from potentials generated by random choices of such coefficients over a flat measure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا