Do you want to publish a course? Click here

Popularity, Novelty and Attention

121   0   0.0 ( 0 )
 Added by Bernardo Huberman
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

We analyze the role that popularity and novelty play in attracting the attention of users to dynamic websites. We do so by determining the performance of three different strategies that can be utilized to maximize attention. The first one prioritizes novelty while the second emphasizes popularity. A third strategy looks myopically into the future and prioritizes stories that are expected to generate the most clicks within the next few minutes. We show that the first two strategies should be selected on the basis of the rate of novelty decay, while the third strategy performs sub-optimally in most cases. We also demonstrate that the relative performance of the first two strategies as a function of the rate of novelty decay changes abruptly around a critical value, resembling a phase transition in the physical world. 1



rate research

Read More

The subject of collective attention is central to an information age where millions of people are inundated with daily messages. It is thus of interest to understand how attention to novel items propagates and eventually fades among large populations. We have analyzed the dynamics of collective attention among one million users of an interactive website -- texttt{digg.com} -- devoted to thousands of novel news stories. The observations can be described by a dynamical model characterized by a single novelty factor. Our measurements indicate that novelty within groups decays with a stretched-exponential law, suggesting the existence of a natural time scale over which attention fades.
We present a method for accurately predicting the long time popularity of online content from early measurements of user access. Using two content sharing portals, Youtube and Digg, we show that by modeling the accrual of views and votes on content offered by these services we can predict the long-term dynamics of individual submissions from initial data. In the case of Digg, measuring access to given stories during the first two hours allows us to forecast their popularity 30 days ahead with remarkable accuracy, while downloads of Youtube videos need to be followed for 10 days to attain the same performance. The differing time scales of the predictions are shown to be due to differences in how content is consumed on the two portals: Digg stories quickly become outdated, while Youtube videos are still found long after they are initially submitted to the portal. We show that predictions are more accurate for submissions for which attention decays quickly, whereas predictions for evergreen content will be prone to larger errors.
Algorithms that favor popular items are used to help us select among many choices, from engaging articles on a social media news feed to songs and books that others have purchased, and from top-raked search engine results to highly-cited scientific papers. The goal of these algorithms is to identify high-quality items such as reliable news, beautiful movies, prestigious information sources, and important discoveries --- in short, high-quality content should rank at the top. Prior work has shown that choosing what is popular may amplify random fluctuations and ultimately lead to sub-optimal rankings. Nonetheless, it is often assumed that recommending what is popular will help high-quality content bubble up in practice. Here we identify the conditions in which popularity may be a viable proxy for quality content by studying a simple model of cultural market endowed with an intrinsic notion of quality. A parameter representing the cognitive cost of exploration controls the critical trade-off between quality and popularity. We find a regime of intermediate exploration cost where an optimal balance exists, such that choosing what is popular actually promotes high-quality items to the top. Outside of these limits, however, popularity bias is more likely to hinder quality. These findings clarify the effects of algorithmic popularity bias on quality outcomes, and may inform the design of more principled mechanisms for techno-social cultural markets.
Funding the production of quality online content is a pressing problem for content producers. The most common funding method, online advertising, is rife with well-known performance and privacy harms, and an intractable subject-agent conflict: many users do not want to see advertisements, depriving the site of needed funding. Because of these negative aspects of advertisement-based funding, paywalls are an increasingly popular alternative for websites. This shift to a pay-for-access web is one that has potentially huge implications for the web and society. Instead of a system where information (nominally) flows freely, paywalls create a web where high quality information is available to fewer and fewer people, leaving the rest of the web users with less information, that might be also less accurate and of lower quality. Despite the potential significance of a move from an advertising-but-open web to a paywalled web, we find this issue understudied. This work addresses this gap in our understanding by measuring how widely paywalls have been adopted, what kinds of sites use paywalls, and the distribution of policies enforced by paywalls. A partial list of our findings include that (i) paywall use is accelerating (2x more paywalls every 6 months), (ii) paywall adoption differs by country (e.g. 18.75% in US, 12.69% in Australia), (iii) paywalls change how users interact with sites (e.g. higher bounce rates, less incoming links), (iv) the median cost of an annual paywall access is $108 per site, and (v) paywalls are in general trivial to circumvent. Finally, we present the design of a novel, automated system for detecting whether a site uses a paywall, through the combination of runtime browser instrumentation and repeated programmatic interactions with the site. We intend this classifier to augment future, longitudinal measurements of paywall use and behavior.
The tragedy of the digital commons does not prevent the copious voluntary production of content that one witnesses in the web. We show through an analysis of a massive data set from texttt{YouTube} that the productivity exhibited in crowdsourcing exhibits a strong positive dependence on attention, measured by the number of downloads. Conversely, a lack of attention leads to a decrease in the number of videos uploaded and the consequent drop in productivity, which in many cases asymptotes to no uploads whatsoever. Moreover, uploaders compare themselves to others when having low productivity and to themselves when exceeding a threshold.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا