Do you want to publish a course? Click here

An intermediate gamma beta-beam neutrino experiment with long baseline

225   0   0.0 ( 0 )
 Publication date 2008
  fields
and research's language is English
 Authors Davide Meloni




Ask ChatGPT about the research

In order to address some fundamental questions in neutrino physics a wide, future programme of neutrino oscillation experiments is currently under discussion. Among those, long baseline experiments will play a crucial role in providing information on the value of theta13, the type of neutrino mass ordering and on the value of the CP-violating phase delta, which enters in 3-neutrino oscillations. Here, we consider a beta-beam setup with an intermediate Lorentz factor gamma=450 and a baseline of 1050 km. This could be achieved in Europe with a beta-beam sourced at CERN to a detector located at the Boulby mine in the United Kingdom. We analyse the physics potential of this setup in detail and study two different exposures (1 x 10^{21} and 5 x 10^{21} ions-kton-years). In both cases, we find that the type of neutrino mass hierarchy could be determined at 99% CL, for all values of delta, for sin^2(2 theta13) > 0.03. In the high-exposure scenario, we find that the value of the CP-violating phase delta could be measured with a 99% CL error of ~20 deg if sin^2 (2 theta13) > 10^{-3}, with some sensitivity down to values of sin^2(2 theta13) ~ 10^{-4}. The ability to determine the octant of theta23 is also studied, and good prospects are found for the high-statistics scenario.



rate research

Read More

We study the neutrino oscillation physics performance of the Long-Baseline Neutrino Experiment (LBNE) in various configurations. In particular, we compare the case of a surface detector at the far site augmented by a near detector, to that with the far site detector placed deep underground but no near detector. In the latter case, information from atmospheric neutrino events is also utilized. For values of theta_{13} favored by reactor experiments and a 100 kt-yr exposure, we find roughly equivalent sensitivities to the neutrino mass hierarchy, the octant of theta_{23}, and to CP violation. We also find that as the exposure is increased, the near detector helps increase the sensitivity to CP violation substantially more than atmospheric neutrinos.
202 - V. Barger , M. Bishai , D. Bogert 2007
This report provides the results of an extensive and important study of the potential for a U.S. scientific program that will extend our knowledge of neutrino oscillations well beyond what can be anticipated from ongoing and planned experiments worldwide. The program examined here has the potential to provide the U.S. particle physics community with world leading experimental capability in this intensely interesting and active field of fundamental research. Furthermore, this capability could be unique compared to anywhere else in the world because of the available beam intensity and baseline distances. The present study was initially commissioned in April 2006 by top research officers of Brookhaven National Laboratory and Fermi National Accelerator Laboratory and, as the study evolved, it also provided responses to questions formulated and addressed to the study group by the Neutrino Scientific Advisory Committee (NuSAG) of the U.S. DOE and NSF. The participants in the study, its Charge and history, plus the study results and conclusions are provided in this report and its appendices. A summary of the conclusions is provided in the Executive Summary.
We examine the reach of a Beta-beam experiment with two detectors at carefully chosen baselines for exploring neutrino mass parameters. Locating the source at CERN, the two detectors and baselines are: (a) a 50 kton iron calorimeter (ICAL) at a baseline of around 7150 km which is roughly the magic baseline, e.g., ICAL@INO, and (b) a 50 kton Totally Active Scintillator Detector at a distance of 730 km, e.g., at Gran Sasso. We choose 8B/8Li source ions with a boost factor gamma of 650 for the magic baseline while for the closer detector we consider 18Ne/6He ions with a range of Lorentz boosts. We find that the locations of the two detectors complement each other leading to an exceptional high sensitivity. With gamma=650 for 8B/8Li and gamma=575 for 18Ne/6He and total luminosity corresponding to 5times (1.1 times 10^{18}) and 5times (2.9times 10^{18}) useful ion decays in neutrino and antineutrino modes respectively, we find that our two detector set-up can probe maximal CP violation and establish the neutrino mass ordering if sin^22theta_{13} is 1.4times 10^{-4} and 2.7times 10^{-4}, respectively, or more. The sensitivity reach for sin^22theta_{13} itself is 5.5 times 10^{-4}. With a factor of 10 higher luminosity, the corresponding sin^22theta_{13} reach of this set-up would be 1.8times 10^{-5}, 4.6times 10^{-5} and 5.3times 10^{-5} respectively for the above three performance indicators. CP violation can be discovered for 64% of the possible delta_{CP} values for sin^22theta_{13} geq 10^{-3} (geq 8times 10^{-5}), for the standard luminosity (10 times enhanced luminosity). Comparable physics performance can be achieved in a set-up where data from CERN to INO@ICAL is combined with that from CERN to the Boulby mine in United Kingdom, a baseline of 1050 km.
Establishing the neutrino mass hierarchy is one of the fundamental questions that will have to be addressed in the next future. Its determination could be obtained with long-baseline experiments but typically suffers from degeneracies with other neutrino parameters. We consider here the NOvA experiment configuration and propose to place a second off-axis detector, with a shorter baseline, such that, by exploiting matter effects, the type of neutrino mass hierarchy could be determined with only the neutrino run. We show that the determination of this parameter is free of degeneracies, provided the ratio L/E, where L the baseline and E is the neutrino energy, is the same for both detectors.
Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW $times$ 10$^7$ sec integrated proton beam power (corresponding to $1.56times10^{22}$ protons on target with a 30 GeV proton beam) to a $2.5$-degree off-axis neutrino beam, it is expected that the leptonic $CP$ phase $delta_{CP}$ can be determined to better than 19 degrees for all possible values of $delta_{CP}$, and $CP$ violation can be established with a statistical significance of more than $3,sigma$ ($5,sigma$) for $76%$ ($58%$) of the $delta_{CP}$ parameter space. Using both $ u_e$ appearance and $ u_mu$ disappearance data, the expected 1$sigma$ uncertainty of $sin^2theta_{23}$ is 0.015(0.006) for $sin^2theta_{23}=0.5(0.45)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا