Do you want to publish a course? Click here

Investigating Artificial Immune Systems For Job Shop Rescheduling In Changing Environments

101   0   0.0 ( 0 )
 Added by Uwe Aickelin
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

Artificial immune system can be used to generate schedules in changing environments and it has been proven to be more robust than schedules developed using a genetic algorithm. Good schedules can be produced especially when the number of the antigens is increased. However, an increase in the range of the antigens had somehow affected the fitness of the immune system. In this research, we are trying to improve the result of the system by rescheduling the same problem using the same method while at the same time maintaining the robustness of the schedules.



rate research

Read More

Previous research has shown that artificial immune systems can be used to produce robust schedules in a manufacturing environment. The main goal is to develop building blocks (antibodies) of partial schedules that can be used to construct backup solutions (antigens) when disturbances occur during production. The building blocks are created based upon underpinning ideas from artificial immune systems and evolved using a genetic algorithm (Phase I). Each partial schedule (antibody) is assigned a fitness value and the best partial schedules are selected to be converted into complete schedules (antigens). We further investigate whether simulated annealing and the great deluge algorithm can improve the results when hybridised with our artificial immune system (Phase II). We use ten fixed solutions as our target and measure how well we cover these specific scenarios.
278 - Uwe Aickelin 2008
Over the last few years, more and more heuristic decision making techniques have been inspired by nature, e.g. evolutionary algorithms, ant colony optimisation and simulated annealing. More recently, a novel computational intelligence technique inspired by immunology has emerged, called Artificial Immune Systems (AIS). This immune system inspired technique has already been useful in solving some computational problems. In this keynote, we will very briefly describe the immune system metaphors that are relevant to AIS. We will then give some illustrative real-world problems suitable for AIS use and show a step-by-step algorithm walkthrough. A comparison of AIS to other well-known algorithms and areas for future work will round this keynote off. It should be noted that as AIS is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from the examples given here.
114 - Uwe Aickelin , Steve Cayzer 2008
Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems.
The Flexible Job Shop Scheduling Problem (FJSP) is a combinatorial problem that continues to be studied extensively due to its practical implications in manufacturing systems and emerging new variants, in order to model and optimize more complex situations that reflect the current needs of the industry better. This work presents a new meta-heuristic algorithm called GLNSA (Global-local neighborhood search algorithm), in which the neighborhood concepts of a cellular automaton are used, so that a set of leading solutions called smart_cells generates and shares information that helps to optimize instances of FJSP. The GLNSA algorithm is complemented with a tabu search that implements a simplified version of the Nopt1 neighborhood defined in [1] to complement the optimization task. The experiments carried out show a satisfactory performance of the proposed algorithm, compared with other results published in recent algorithms and widely cited in the specialized bibliography, using 86 test problems, improving the optimal result reported in previous works in two of them.
153 - Uwe Aickelin , Qi Chen 2008
We combine Artificial Immune Systems AIS, technology with Collaborative Filtering CF and use it to build a movie recommendation system. We already know that Artificial Immune Systems work well as movie recommenders from previous work by Cayzer and Aickelin 3, 4, 5. Here our aim is to investigate the effect of different affinity measure algorithms for the AIS. Two different affinity measures, Kendalls Tau and Weighted Kappa, are used to calculate the correlation coefficients for the movie recommender. We compare the results with those published previously and show that Weighted Kappa is more suitable than others for movie problems. We also show that AIS are generally robust movie recommenders and that, as long as a suitable affinity measure is chosen, results are good.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا