Do you want to publish a course? Click here

On the importance of the wind emission to the optical continuum of OB supergiants

103   0   0.0 ( 0 )
 Added by Michaela Kraus
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thermal wind emission in the form of free-free and free-bound emission is known to show up in the infrared and radio continuum of hot and massive stars. For OB supergiants with moderate mass loss rates and a wind velocity distribution with beta = 0.8...1.0, no influence of the wind to the optical continuum, i.e. for lambda < 1 micron, is expected. Investigations of stellar and wind parameters of OB supergiants over the last few years suggest, however, that for many objects beta is much higher than 1.0, reaching values up to 3.5. We investigate the influence of the free-free and free-bound emission on the emerging radiation, especially at optical wavelengths, from OB supergiants having wind velocity distributions with beta > 1. For the case of a spherically symmetric, isothermal wind in local thermodynamical equilibrium (LTE) we calculate the free-free and free-bound processes and the emerging wind and total continuum spectra. We localize the generation region of the optical wind continuum and especially focus on the influence of a beta-type wind velocity distribution with beta > 1 on the formation of the wind continuum at optical wavelengths. The optical wind continuum is found to be generated within about 2 R_* which is exactly the wind region where beta strongly influences the density distribution. We find that for beta > 1, the continuum of a typical OB supergiant can indeed be contaminated with thermal wind emission, even at optical wavelengths. The strong increase in the optical wind emission is dominantly produced by free-bound processes.



rate research

Read More

The influence of the wind to the total continuum of OB supergiants is discussed. For wind velocity distributions with beta > 1.0, the wind can have strong influence to the total continuum emission, even at optical wavelengths. Comparing the continuum emission of clumped and unclumped winds, especially for stars with high beta values, delivers flux differences of up to 30% with maximum in the near-IR. Continuum observations at these wavelengths are therefore an ideal tool to discriminate between clumped and unclumped winds of OB supergiants.
(Abridged) The behaviour of mass loss across bi-stability jump is a key uncertainty in models of massive stars. While an increase in mass loss is theoretically predicted, this has so far not been observationally confirmed. However, radiation-driven winds of massive stars are known to exhibit clumpy structures triggered by the line-deshadowing instability (LDI). Wind clumping affects empirical mass-loss rates inferred from density square-dependent spectral diagnostics. If clumping properties differ significantly for O and B supergiants across the bi-stability jump, this may help alleviate discrepancies between theory and observations. We investigate with analytical and numerical tools how the onset of clumpy structures behaves in the winds of O supergiants (OSG) and B supergiants (BSG) across the bi-stability jump. We derive a scaling relation for the linear growth rate of the LDI for a single optically thick line and apply it in both regimes. We run 1D time-dependent line-driven instability simulations to study the non-linear evolution of the LDI in clumpy OSG and BSG winds. Linear perturbation analysis for a single line shows that the LDI linear growth rate scales strongly with stellar effective temperature and terminal wind speed. This implies significantly lower growth rates for (cooler, slower) BSG winds than for OSG winds. This is confirmed by the non-linear simulations, which show significant differences in OSG and BSG wind structure formation, with the latter characterized by significantly weaker clumping factors and lower velocity dispersions. This suggests that lower correction factors due to clumping should be employed when deriving empirical mass-loss rates for BSGs on the cool side of the bi-stability jump. Moreover, the non-linear simulations provide a theoretical background toward explaining the general lack of observed intrinsic X-ray emission in (single) B star winds.
In this spectroscopic study of infant massive star clusters, we find that continuum emission from ionized gas rivals the stellar luminosity at optical wavelengths. In addition, we find that nebular line emission is significant in many commonly used broad-band HST filters including the F814W I-band, the F555W V-band and the F435W B-band. Two young massive clusters (YMCs) in NGC 4449 were targeted for spectroscopic observations after Reines et al. (2008a) discovered an F814W I-band excess in their photometric study of radio-detected clusters in the galaxy. The spectra were obtained with the Dual Imaging Spectrograph on the 3.5 m APO telescope. We supplement these data with HST and SDSS photometry. By comparing our data to the Starburst99 and GALEV models, we find that nebular continuum emission competes with the stellar light in our observations and that the relative contribution is largest in the U- and I-bands, where the Balmer and Paschen jumps are located. The spectra also exhibit strong line emission including the [SIII] 9069,9532 lines in the HST F814W I-band. We find that the combination of nebular continuum and line emission can account for the F814W I-band excess found by Reines et al. (2008a). In an effort to provide a benchmark for estimating the impact of ionized gas emission on photometric observations of YMCs, we compute the relative contributions of the stellar continuum, nebular continuum, and emission lines to the total flux of a 3 Myr-old cluster through various HST filter/instrument combinations, including filters in the WFC3. We urge caution when comparing observations of YMCs to evolutionary synthesis models since nebular emission can have a large impact on magnitudes and colors of young (< 5 Myr) clusters, significantly affecting inferred properties such as ages, masses and extinctions. (Abridged)
101 - Curtis Struck 2020
Bow-shaped mid-infrared emission regions have been discovered in satellite observations of numerous late-type O and early-type B stars with moderate velocities relative to the ambient interstellar medium. Previously, hydrodynamical bow shock models have been used to study this emission. It appears that such models are incomplete in that they neglect kinetic effects associated with long mean free paths of stellar wind particles, and the complexity of Weibel instability fronts. Wind ions are scattered in the Weibel instability and mix with the interstellar gas. However, they do not lose their momentum and most ultimately diffuse further into the ambient gas like cosmic rays, and share their energy and momentum. Lacking other coolants, the heated gas transfers energy to interstellar dust grains, which radiate it. This process, in addition to grain photo-heating, provides the energy for the emission. A weak R-type ionization front, formed well outside the infrared emission region, generally moderates the interstellar gas flow into the emission region. The theory suggests that the infrared emission process is limited to cases of moderate stellar peculiar velocities, evidently in accord with the observations.
High-resolution IRAS maps are used to search for the presence of stellar-wind bow-shocks around high-mass X-ray binaries (HMXBs). Their high space velocities, recently confirmed with Hipparcos observations, combined with their strong stellar winds should result in the formation of wind bow-shocks. Except for the already known bow-shock around Vela X-1 (Kaper et al. 1997), we do not find convincing evidence for a bow-shock around any of the other HMXBs. Also in the case of (supposedly single) OB-runaway stars, only a minority appears to be associated with a bow-shock (Van Buren et al. 1995). We investigate why wind bow-shocks are not detected for the majority of these OB-runaway systems: is this due to the IRAS sensitivity, the systems space velocity, the stellar-wind properties, or the height above the galactic plane? It turns out that none of these suggested causes can explain the low detection rate (~40%). We propose that the conditions of the interstellar medium mainly determine whether a wind bow-shock is formed or not. In hot, tenuous media (like inside galactic superbubbles) the sound speed is high (~100 km/s), such that many runaways move at subsonic velocity through a low-density medium, thus preventing the formation of an observable bow-shock. Superbubbles are expected (and observed) around OB associations, where the OB-runaway stars were once born. Turning the argument around, we use the absence (or presence) of wind bow-shocks around OB runaways to probe the physical conditions of the interstellar medium in the solar neighbourhood.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا