The Schrodinger equation for the Manning-Rosen potential with the centrifugal term is solved approximately to obtain bound states energies. Additionally, the corresponding wave functions are expressed by the Jacobi polynomials. The Nikiforov-Uvarov (${rm NU}$) method is used in the calculations. To show the accuracy of our results, we calculate the eigenvalues numerically for arbitrary quantum numbers $n$ and $l$ with two different values of the potential parameter $alpha .$ It is shown that the results are in good agreement with the those obtained by other methods for short potential range, small $l$ and $alpha .$ This solution reduces to two cases $l=0$ and Hulthen potential case.