No Arabic abstract
Using $5.8 times 10^7 J/psi$ events collected in the BESII detector, the radiative decay $J/psi to gamma phi phi to gamma K^+ K^- K^0_S K^0_L$ is studied. The $phiphi$ invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/$c^{2}$. A partial wave analysis shows that the structure is dominated by a $0^{-+}$ state ($eta(2225)$) with a mass of $2.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02}$ GeV/$c^{2}$ and a width of $0.19 pm 0.03^{+0.06}_{-0.04}$ GeV/$c^{2}$. The product branching fraction is: $Br(J/psi to gamma eta(2225))cdot Br(eta(2225)to phiphi) = (4.4 pm 0.4 pm 0.8)times 10^{-4}$.
Based on a sample of $2.25times 10^{8}$ $J/psi$ events collected with the BESIII detector at BEPCII, a full partial wave analysis on $J/psitogammaetaeta$ was performed using the relativistic covariant tensor amplitude method. The results show that the dominant $0^{++}$ and $2^{++}$ components are from the $f_0(1710)$, $f_0(2100)$, $f_0(1500)$, $f_2(1525)$, $f_2(1810)$ and $f_2(2340)$. The resonance parameters and branching fractions are also presented.
The first full amplitude analysis of $B^+to J/psi phi K^+$ with $J/psitomu^+mu^-$, $phito K^+K^-$ decays is performed with a data sample of 3 fb$^{-1}$ of $pp$ collision data collected at $sqrt{s}=7$ and $8$ TeV with the LHCb detector. The data cannot be described by a model that contains only excited kaon states decaying into $phi K^+$, and four $J/psiphi$ structures are observed, each with significance over $5$ standard deviations. The quantum numbers of these structures are determined with significance of at least $4$ standard deviations. The lightest has mass consistent with, but width much larger than, previous measurements of the claimed $X(4140)$ state. The model includes significant contributions from a number of expected kaon excitations, including the first observation of the $K^{*}(1680)^+tophi K^+$ transition.
The first observation of exotic states with a new quark content $c bar{c} u bar{s}$ decaying to the $J/psi K^+$ final state is reported with high significance from an amplitude analysis of the $B^+ to J/psi phi K^+$ decay. The analysis is carried out using proton-proton collision data corresponding to a total integrated luminosity of 9 fb$^{-1}$ collected by the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV. The most significant state, $Z_{cs}(4000)^+$, has a mass of $4003pm6,^{+,phantom{0}4}_{-,14}$ MeV, a width of $131pm15pm26$ MeV, and spin-parity $J^P=1^+$, where the quoted uncertainties are statistical and systematic, respectively. A new $1^+$ $X(4685)$ state decaying to the $J/psi phi$ final state is also observed with high significance. In addition, the four previously reported $J/psi phi$ states are confirmed and two more exotic states, $Z_{cs}(4220)^+$ and $X(4630)$, are observed with significance exceeding five standard deviations.
The $B_s^0 rightarrow J/psi phi phi$ decay is observed in $pp$ collision data corresponding to an integrated luminosity of 3 fb$^{-1}$ recorded by the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV. This is the first observation of this decay channel, with a statistical significance of 15 standard deviations. The mass of the $B_s^0$ meson is measured to be $5367.08,pm ,0.38,pm, 0.15$ MeV/c$^2$. The branching fraction ratio $mathcal{B}(B_s^0 rightarrow J/psi phi phi)/mathcal{B}(B_s^0 rightarrow J/psi phi)$ is measured to be $0.0115,pm, 0.0012, ^{+0.0005}_{-0.0009}$. In both cases, the first uncertainty is statistical and the second is systematic. No evidence for non-resonant $B_s^0 rightarrow J/psi phi K^+ K^-$ or $B_s^0 rightarrow J/psi K^+ K^- K^+ K^-$ decays is found.
Using $1.06times10^8$ $psi(3686)$ events recorded in $e^{+}e^{-}$ collisions at $sqrt{s}=$ 3.686 GeV with the BESIII at the BEPCII collider, we present searches for C-parity violation in $J/psi to gammagamma$ and $ gamma phi$ decays via $psi(3686) to J/psi pi^+pi^-$. No significant signals are observed in either channel. Upper limits on the branching fractions are set to be $mathcal{B}(J/psi to gammagamma) < 2.7 times 10^{-7}$ and $mathcal{B}(J/psi to gammaphi) < 1.4 times 10^{-6}$ at the 90% confidence level. The former is one order of magnitude more stringent than the previous upper limit, and the latter represents the first limit on this decay channel.