Do you want to publish a course? Click here

Discovery of Localized Regions of Excess 10-TeV Cosmic Rays

181   0   0.0 ( 0 )
 Added by Gary Walker
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

An analysis of 7 years of Milagro data performed on a 10-degree angular scale has found two localized regions of excess of unknown origin with greater than 12 sigma significance. Both regions are inconsistent with gamma-ray emission with high confidence. One of the regions has a different energy spectrum than the isotropic cosmic-ray flux at a level of 4.6 sigma, and it is consistent with hard spectrum protons with an exponential cutoff, with the most significant excess at ~10 TeV. Potential causes of these excesses are explored, but no compelling explanations are found.



rate research

Read More

362 - T.Tanimori , Y.Hayami , S.Kamei 1998
This paper reports the first discovery of TeV gamma-ray emission from a supernova remnant made with the CANGAROO 3.8 m Telescope. TeV gamma rays were detected at the sky position and extension coincident with the north-east (NE) rim of shell-type Supernova remnant (SNR) SN1006 (Type Ia). SN1006 has been a most likely candidate for an extended TeV Gamma-ray source, since the clear synchrotron X-ray emission from the rims was recently observed by ASCA (Koyama et al. 1995), which is a strong evidence of the existence of very high energy electrons up to hundreds of TeV in the SNR. The observed TeV gamma-ray flux was $(2.4pm 0.5(statistical) pm 0.7(systematic)) times 10^{-12}$ cm$^{-2}$ s$^{-1}$ ($ge 3.0pm 0.9$ TeV) and $ (4.6pm 0.6 pm 1.4) times 10^{-12}$ cm$^{-2}$ s$^{-1}$ ($ge 1.7pm 0.5$ TeV) from the 1996 and 1997 observations, respectively. Also we set an upper limit on the TeV gamma-ray emission from the SW rim, estimated to be $ 1.1 times 10^{-12}$ cm$^{-2}$ s$^{-1}$ ($ge 1.7pm 0.5$ TeV, 95% CL) in the 1997 data. The TeV gamma rays can be attributed to the 2.7 K cosmic background photons up-scattered by electrons of energies up to about 10$^{14}$ eV by the inverse Compton (IC) process. The observed flux of the TeV gamma rays, together with that of the non-thermal X-rays, gives firm constraints on the acceleration process in the SNR shell; a magnetic field of $6.5pm2$ $mu$G is inferred from both the synchrotron X-rays and inverse Compton TeV gamma-rays, which gives entirely consistent mechanisms that electrons of energies up to 10$^{14}$ eV are produced via the shock acceleration in SN1006.
We have observed Markarian 421 in January and March 2001 with the CANGAROO-II imaging Cherenkov telescope during an extraordinarily high state at TeV energies. From 14 hours observations at very large zenith angles, $sim70^circ$, a signal of 298 $pm$ 52 gamma-ray--like events (5.7 $sigma$) was detected at $E>10$ TeV, where a higher sensitivity is achieved than those of usual observations near the zenith, owing to a greatly increased collecting area. Under the assumption of an intrinsic power-law spectrum, we derived a differential energy spectrum $dN/dE = (3.3 pm 0.9_{stat.} pm 0.3_{syst.})times10^{-13} (E/10 {Te V})^{-(4.0 ^{+0.9}_{-0.6}_{stat.} pm 0.3_{syst.})}$ ph./cm$^2$/sec/TeV, which is steeper than those previously measured around 1 TeV, and supports the evidence for a cutoff in the spectrum of Markarian 421. However, the 4 $sigma$ excess at energies greater than 20 TeV in our data favors a cutoff energy of $sim$8 TeV, at the upper end of the range previously reported from measurements at TeV energies.
We present the first full-sky analysis of the cosmic ray arrival direction distribution with data collected by the HAWC and IceCube observatories in the Northern and Southern hemispheres at the same median primary particle energy of 10 TeV. The combined sky map and angular power spectrum largely eliminate biases that result from partial sky coverage and holds a key to probe into the propagation properties of TeV cosmic rays through our local interstellar medium and the interaction between the interstellar and heliospheric magnetic fields. From the map we determine the horizontal dipole components of the anisotropy $delta_{0h} = 9.16 times 10^{-4}$ and $delta_{6h} = 7.25 times 10^{-4}~(pm0.04 times 10^{-4})$. In addition, we infer the direction ($229.2pm 3.5^circ$ RA , $11.4pm 3.0^circ$ Dec.) of the interstellar magnetic field from the boundary between large scale excess and deficit regions from which we estimate the missing corresponding vertical dipole component of the large scale anisotropy to be $delta_N sim -3.97 ^{+1.0}_{-2.0} times 10^{-4}$.
There are some discrepancies in the results on energy spectrum from Yakutsk, AGASA, and HiRes experiments. In this work differential energy spectrum of primary cosmic rays based on the Yakutsk EAS Array data is presented. For the largest events values of $S_{600}$ and axes coordinates have been obtained using revised lateral distribution function. Simulation of converters response at large distances showed no considerable underestimation of particle density. Complex shape of spectrum in region of $E > 10^{17}$ eV is confirmed. After adjustment of parameters and additional exposition at the Yakutsk array there are three events with energy $E > 10^{20}$ eV.
64 - C. W. Akerlof 1997
A search was conducted for TeV gamma-rays emitted from the direction of the ultra-high energy cosmic ray detected by the Flys Eye Experiment with E ~ 3 x 10**20 eV. No enhancement was found at a level of 10**-10 gamma/cm**2-sec for E>350 GeV. This upper limit is consistent with theoretical estimates based on topological defects as sources of UHE cosmic rays. An upper limit was also set for the flux of TeV gamma rays from 3C147, the most prominent AGN in the error box.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا