Revisiting the conformal invariance of the scalar field: from Minkowski space to de Sitter space


Abstract in English

In this article, we clarify the link between the conformal (i.e. Weyl) correspondence from the Minkowski space to the de Sitter space and the conformal (i.e. SO(2,$d$)) invariance of the conformal scalar field on both spaces. We exhibit the realization on de Sitter space of the massless scalar representation of SO$(2,d)$. It is obtained from the corresponding representation in Minkowski space through an intertwining operator inherited from the Weyl relation between the two spaces. The de Sitter representation is written in a form which allows one to take the point of view of a Minkowskian observer who sees the effect of curvature through additional terms.

Download