Do you want to publish a course? Click here

The young star cluster system of the Antennae galaxies

404   0   0.0 ( 0 )
 Added by Peter Anders
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of young star cluster (YSC) systems, preferentially in starburst and merging galaxies, has seen great interest in the recent past, as it provides important input to models of star formation. However, even some basic properties (like the luminosity function [LF]) of YSC systems are still under debate. Here we study the photometric properties of the YSC system in the nearest major merger system, the Antennae galaxies. We find evidence for the existence of a statistically significant turnover in the LF.



rate research

Read More

The luminosity functions (LFs) of star cluster systems (i.e. the number of clusters per luminosity interval) are vital diagnostics to probe the conditions of star cluster formation. Early studies have revealed a clear dichotomy between old globular clusters and young clusters, with the former characterised by Gaussian-shaped LFs, and the latter following a power law. Recently, this view was challenged by studies of galaxy merger remnants and post-starburst galaxies. In this paper we re-evaluate the young ($lta$ few hundreds of Myrs, with the majority $lta$ few tens of Myrs) star cluster system in the ongoing spiral-spiral major merger system NGC 4038/39, the Antennae galaxies. The Antennae galaxies represent a very active and complex star-forming environment, which hampers cluster selection and photometry as well as the determination of observational completeness fractions. A main issue of concern is the large number of bright young stars contained in most earlier studies, which we carefully exclude from our cluster sample by accurately determining the source sizes. The resulting LFs are fitted both with Gaussian and with power-law distributions, taking into account both the observational completeness fractions and photometric errors, and compared using a likelihood ratio test. The likelihood ratio results are rigidly evaluated using Monte Carlo simulations. We perform a number of additional tests, e.g. with subsets of the total sample, all confirming our main result: that a Gaussian distribution fits the observed LFs of clusters in this preferentially very young cluster system significantly better than a power-law distribution, at a (statistical) error probability of less than 0.5 per cent.
We use Atacama Large Millimeter Array CO(3-2) observations in conjunction with optical observations from the Hubble Space Telescope to determine the ratio of stellar to gas mass for regions in the Antennae Galaxies. We adopt the term instantaneous mass ratio IMR(t) = M$_{stars}$/(M$_{gas}$ +M$_{stars}$), that is equivalent to the star formation efficiency for an idealized system at t = 0. We use two complementary approaches to determining the IMR(t) based on 1) the enclosed stellar and molecular mass within circular apertures centered on optically-identified clusters, and 2) a tessellation algorithm that defines regions based on CO emission. We find that only a small number of clusters appear to have IMR(0) = SFE > 0.2, which suggests that only a small fraction of these clusters will remain bound. The results suggest that by ages of $10^{6.7}$ years, some clusters will have lost all of their associated molecular gas, and by $10^{7.5}$ years this is true for the majority of clusters. There appears to be slight dependence of the IMR(t) on the CO surface brightness, which could support the idea that dense molecular environments are more likely to form bound clusters. However, the IMR(t) appears to have a strong dependence on extinction, which likely traces the evolutionary state of clusters.
93 - Qing Zhang 2001
We report on a multi-wavelength study of the relationship between young star clusters in the Antennae galaxies (NGC 4038/9) and their interstellar environment, with the goal of understanding the formation and feedback effects of star clusters in merging galaxies. This is possible for the first time because various new observations (from X-rays to radio wavelengths) have become available in the past several years. Quantitative comparisons are made between the positions of the star clusters (broken into three age groups) and the properties of the interstellar medium by calculating the two-point correlation functions. We find that young star clusters are distributed in a clustered fashion. The youngest star clusters are associated with molecular cloud complexes with characteristic radii of about 1 kpc. In addition, there is a weak tendency for them to be found in regions with higher HI velocity dispersions. No dominant triggering mechanism is identified for the majority of the clusters in the Antennae. Feedback from young bright cluster complexes show large H_alpha bubbles and H_alpha velocity gradients in shells around the complexes. We estimate the current star formation rate to be 20 solar mass/yr, and the gas consumption timescale to be 700 Myr. The latter is comparable to the merging time scale and indicates that star formation has been enchanced by the merger event. Finally, we find that the Schmidt law, with index N=-1.4, is also a good description of the cluster formation triggered by merging in the Antennae. There is some evidence that feedback effects may modify the Schmidt law at scales below 1 kpc.
The Antennae Galaxies is one of the starbursts in major mergers. Tsuge et al. (2020) showed that the five giant molecular complexes in the Antennae Galaxies have signatures of cloud-cloud collisions based on the ALMA archival data at 60 pc resolution. In the present work we analyzed the new CO data toward the super star cluster (SSC) B1 at 14 pc resolution obtained with ALMA, and confirmed that two clouds show complementary distribution with a displacement of $sim$70 pc as well as the connecting bridge features between them. The complementary distribution shows a good correspondence with the theoretical collision model (Takahira et al. 2014), and indicates that SSC B1 having $sim$10$^{6}$ $M$$_{odot}$ was formed by the trigger of a cloud-cloud collision with a time scale of $sim$1Myr, which is consistent with the cluster age. It is likely that SSC B1 was formed from molecular gas of $sim$10$^{7}$ $M$$_{odot}$ with a star formation efficiency of $sim$10 % in 1 Myr. We identified a few places where additional clusters are forming. Detailed gas motion indicates stellar feedback in accelerating gas is not effective, while ionization plays a role in evacuating the gas around the clusters at a $sim$30-pc radius. The results have revealed the details of the parent gas where a cluster having mass similar to a globular is being formed.
157 - A. Schulz 2007
To study the properties of the interstellar medium in the prototypical merging system of the Antennae galaxies (NGC 4038 and NGC 4039), we have obtained CO(1-0), (2-1) and (3-2) line maps, as well as a map of the 870 micron continuum emission. Our results are analysed in conjunction with data from X-ray to radio wavelengths. In order to distinguish between exact coincidence and merely close correspondence of emission features, we compare the morphological structure of the different emission components at the highest available angular resolution. To constrain the physical state of the molecular gas, we apply models of photon dominated regions (PDRs) that allow us to fit CO and [CII] data, as well as other indicators of widespread PDRs in the Antennae system, particularly within the super giant molecular cloud (SGMC) complexes of the interaction region (IAR) between the two galaxies. The modeled clouds have cores with moderately high gas densities up to 4 10^4 / cm^3 and rather low kinetic temperatures <=25K). At present, all these clouds, including those near the galactic nuclei, show no signs of intense starburst activity. Thermal radio or mid-infrared emission are all observed to peak slightly offset from the molecular peaks. The total molecular gas mass of the Antennae system adds up to ~10^10 M_sun. In the vicinity of each galactic nucleus, the moleculargas mass, 1-2 10^9 M_sun, exceeds that of the Galactic centre region by a factorof almost 100. Furthermore, the gas does not seem to deviate much from the N_{H_2}/I_CO ratio typical of the disk of our Galaxy rather than our Galactic centre.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا