Quantum lithography proposes to adopt entangled quantum states in order to increase resolution in interferometry. In the present paper we experimentally demonstrate that the output of a high-gain optical parametric amplifier can be intense yet exhibits quantum features, namely, sub-Rayleigh fringes, as proposed by Agarwal et al. (Phys. Rev. Lett. 86, 1389 (2001)). We investigate multiphoton states generated by a high-gain optical parametric amplifier operating with a quantum vacuum input for a gain values up to 2.5. The visibility has then been increased by means of three-photon absorption. The present article opens interesting perspectives for the implementation of such an advanced interferometrical setup.