Approximate l-state solutions of the D-dimensional Schrodinger equation for Manning-Rosen potential


Abstract in English

The Schr{o}dinger equation in $D$-dimensions for the Manning-Rosen potential with the centrifugal term is solved approximately to obtain bound states eigensolutions (eigenvalues and eigenfunctions). The Nikiforov-Uvarov(NU) method is used in the calculations. We present numerical calculations of energy eigenvalues to two- and four-dimensional systems for arbitrary quantum numbers $n$ and $l$ with three different values of the potential parameter $alpha .$ It is shown that because of the interdimensional degeneracy of eigenvalues, we can also reproduce eigenvalues of a upper/lower dimensional sytem from the well-known eigenvalues of a lower/upper dimensional system by means of the transformation $(n,l,D)to (n,lpm 1,Dmp 2)$. This solution reduces to the Hulth{e}n potential case.

Download