Do you want to publish a course? Click here

A Measurement of the Rate of type-Ia Supernovae at Redshift $zapprox$ 0.1 from the First Season of the SDSS-II Supernova Survey

255   0   0.0 ( 0 )
 Added by Ben Dilday
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a measurement of the rate of type Ia supernovae (SNe Ia) from the first of three seasons of data from the SDSS-II Supernova Survey. For this measurement, we include 17 SNe Ia at redshift $zle0.12$. Assuming a flat cosmology with $Omega_m = 0.3=1-Omega_Lambda$, we find a volumetric SN Ia rate of $[2.93^{+0.17}_{-0.04}({rm systematic})^{+0.90}_{-0.71}({rm statistical})] times 10^{-5} {rm SNe} {rm Mpc}^{-3} h_{70}^3 {rm year}^{-1}$, at a volume-weighted mean redshift of 0.09. This result is consistent with previous measurements of the SN Ia rate in a similar redshift range. The systematic errors are well controlled, resulting in the most precise measurement of the SN Ia rate in this redshift range. We use a maximum likelihood method to fit SN rate models to the SDSS-II Supernova Survey data in combination with other rate measurements, thereby constraining models for the redshift-evolution of the SN Ia rate. Fitting the combined data to a simple power-law evolution of the volumetric SN Ia rate, $r_V propto (1+z)^{beta}$, we obtain a value of $beta = 1.5 pm 0.6$, i.e. the SN Ia rate is determined to be an increasing function of redshift at the $sim 2.5 sigma$ level. Fitting the results to a model in which the volumetric SN rate, $r_V=Arho(t)+Bdot rho(t)$, where $rho(t)$ is the stellar mass density and $dot rho(t)$ is the star formation rate, we find $A = (2.8 pm 1.2) times 10^{-14} mathrm{SNe} mathrm{M}_{sun}^{-1} mathrm{year}^{-1}$, $B = (9.3^{+3.4}_{-3.1})times 10^{-4} mathrm{SNe} mathrm{M}_{sun}^{-1}$.



rate research

Read More

We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z lesssim 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04+1.61-0.95 % of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of rV = (2.69+0.34+0.21-0.30-0.01) x10^{-5} SNe yr^{-1} Mpc-3 (H0 /(70 km s^{-1} Mpc^{-1}))^{3} at a mean redshift of ~ 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r_V(z) = A_p x ((1 + z)/(1 + z0))^{ u}, over the redshift range 0.0 < z < 0.3 with z0 = 0.21, results in A_p = (3.43+0.15-0.15) x 10^{-5} SNe yr^{-1} Mpc-3 (H0 /(70 km s^{-1} Mpc^{-1}))^{3} and u = 2.04+0.90-0.89.
ABRIDGED We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z <0.17 and 27 SN events in 492 maxBCG clusters at 0.1 < z < 0.3$. We find values for the cluster SN Ia rate of $({0.37}^{+0.17+0.01}_{-0.12-0.01}) mathrm{SNu}r h^{2}$ and $({0.55}^{+0.13+0.02}_{-0.11-0.01}) mathrm{SNu}r h^{2}$ ($mathrm{SNu}x = 10^{-12} L_{xsun}^{-1} mathrm{yr}^{-1}$) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be $({0.31}^{+0.18+0.01}_{-0.12-0.01}) mathrm{SNu}r h^{2}$ and $({0.49}^{+0.15+0.02}_{-0.11-0.01})$ $mathrm{SNu}r h^{2}$ in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be $({2.04}^{+1.99+0.07}_{-1.11-0.04}) mathrm{SNu}r h^{2}$ and $({0.36}^{+0.84+0.01}_{-0.30-0.01}) mathrm{SNu}r h^{2}$ in C4 and maxBCG clusters. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is ${1.94}^{+1.31+0.043}_{-0.91-0.015}$ and ${3.02}^{+1.31+0.062}_{-1.03-0.048}$, for C4 and maxBCG clusters. The SN rate in galaxy clusters as a function of redshift...shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find $r_{L} = $ $[(0.49^{+0.15}_{-0.14}) +$ $(0.91^{+0.85}_{-0.81}) times z]$ $mathrm{SNu}B$ $h^{2}$. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies... we estimate the fraction of cluster SNe that are hostless to be $(9.4^+8._3-5.1)%$.
75 - G. Blanc , C. Afonso , C. Alard 2004
We present the type Ia rate measurement based on two EROS supernova search campaigns (in 1999 and 2000). Sixteen supernovae identified as type Ia were discovered. The measurement of the detection efficiency, using a Monte Carlo simulation, provides the type Ia supernova explosion rate at a redshift ~ 0.13. The result is $0.125^{+0.044+0.028}_{-0.034-0.028} h_{70}^2$ SNu where 1 SNu = 1 SN / $10^{10} L_{sun}^B$ / century. This value is compatible with the previous EROS measurement (Hardin et al. 2000), done with a much smaller sample, at a similar redshift. Comparison with other values at different redshifts suggests an evolution of the type Ia supernova rate.
We present the cosmological analysis of 752 photometrically-classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our photometric-classification method is based on the SN typing technique of Sako et al. (2011), aided by host galaxy redshifts (0.05<z<0.55). SNANA simulations of our methodology estimate that we have a SN Ia typing efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat LambdaCDM cosmological model, we find that our photometric sample alone gives omega_m=0.24+0.07-0.05 (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on omega_m and omega_lambda, comparable to those derived from the spectroscopically-confirmed three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H0, CMB and LRG data, we obtain w=-0.96+0.10-0.10, omega_m=0.29+0.02-0.02 and omega_k=0.00+0.03-0.02 (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is re-assuring, considering the lower redshift leverage of the SDSS-II SN sample (z<0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically-classified SNe Ia samples in improving cosmological constraints.
The rate evolution of subluminous Type Ia Supernovae is presented using data from the Supernova Legacy Survey. This sub-sample represents the faint and rapidly-declining light-curves of the observed supernova Ia (SN Ia) population here defined by low stretch values (s<0.8). Up to redshift z=0.6, we find 18 photometrically-identified subluminous SNe Ia, of which six have spectroscopic redshift (and three are spectroscopically-confirmed SNe Ia). The evolution of the subluminous volumetric rate is constant or slightly decreasing with redshift, in contrast to the increasing SN Ia rate found for the normal stretch population, although a rising behaviour is not conclusively ruled out. The subluminous sample is mainly found in early-type galaxies with little or no star formation, so that the rate evolution is consistent with a galactic mass dependent behavior: $r(z)=Atimes M_g$, with $A=(1.1pm0.3)times10^{-14}$ SNe per year and solar mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا