Do you want to publish a course? Click here

Production of Slow Protonium in Vacuum

231   0   0.0 ( 0 )
 Added by Nicola Zurlo
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We describe how protonium, the quasi-stable antiproton-proton bound system, has been synthesized following the interaction of antiprotons with the molecular ion H$_2^+$ in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events in the ATHENA experiment, evidence is presented for protonium production with sub-eV kinetic energies in states around $n$ = 70, with low angular momenta. This work provides a new 2-body system for study using laser spectroscopic techniques.



rate research

Read More

We present evidence showing how antiprotonic hydrogen, the quasistable antiproton-proton (pbar-p) bound system, has been synthesized following the interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiprotonic hydrogen production with sub-eV kinetic energies in states around n=70, and with low angular momenta. The slow antiprotonic hydrogen may be studied using laser spectroscopic techniques.
We study gravitational particle production of the massive spin-$3/2$ Rarita-Schwinger field, and its close relative, the gravitino, in FRW cosmological spacetimes. For masses lighter than the value of the Hubble expansion rate after inflation, $m_{3/2} lesssim H$, we find catastrophic gravitational particle production, wherein the number of gravitationally produced particles is divergent, caused by a transient vanishing of the helicity-1/2 gravitino sound speed. In contrast with the conventional gravitino problem, the spectrum of produced particles is dominated by those with momentum at the UV cutoff. This suggests a breakdown of effective field theory, which might be cured by new degrees of freedom that emerge in the UV. We study the UV completion of the Rarita-Schwinger field, namely ${cal N}=1$, $d=4$, supergravity. We reproduce known results for models with a single superfield and models with an arbitrary number of chiral superfields, find a simple geometric expression for the sound speed in the latter case, and extend this to include nilpotent constrained superfields and orthogonal constrained superfields. We find supergravity models where the catastrophe is cured and models where it persists. Insofar as quantizing the gravitino is tantamount to quantizing gravity, as is the case in any UV completion of supergravity, the models exhibiting catastrophic production are prime examples of 4-dimensional effective field theories that become inconsistent when gravity is quantized, suggesting a possible link to the Swampland program. We propose the Gravitino Swampland Conjecture, which is consistent with and indeed follows from the KKLT and Large Volume scenarios for moduli stabilization in string theory.
118 - Christophe Suire 2012
Quarkonia states are expected to provide essential information on the properties of the high-density strongly-interacting system formed in the early stages of high-energy heavy-ion collisions. ALICE is the LHC experiment dedicated to the study of nucleus-nucleus collisions and can study charmonia at forward rapidity (2.5 < y < 4) via the mu+ mu- decay channel and at mid rapidity (|y| < 0.9) via the e+ e- decay channel. In both cases charmonia are measured down to zero transverse momentum. The inclusive J/psi production as a function of transverse momentum and rapidity in pp collisions at sqrt{s} = 2.76 and 7 TeV are presented. For pp collisions at sqrt{s} = 7 TeV, the inclusive J/psi production as a function of the charged particle multiplicity, the inclusive J/psi polarization at forward rapidity and the J/psi prompt to non-prompt fraction are discussed. Finally, the analysis of the inclusive J/psi production in the Pb-Pb data collected fall 2011 at a center of mass energy of sqrt{s_{NN}} = 2.76 TeV is presented. Results on the nuclear modification factor are then shown as a function of centrality, transverse momentum and rapidity and compared to model predictions. First results on inclusive J/psi elliptic flow are given.
The production of $J/psi$ mesons in jets is studied in the forward region of proton-proton collisions using data collected with the LHCb detector at a center-of-mass energy of 13 TeV. The fraction of the jet transverse momentum carried by the $J/psi$ meson, $z equiv p_{rm T}(J/psi)/p_{rm T}({rm jet})$, is measured using jets with $p_{rm T}({rm jet}) > 20$ GeV in the pseudorapidity range $2.5 < eta({rm jet}) < 4.0$. The observed $z$ distribution for $J/psi$ mesons produced in $b$-hadron decays is consistent with expectations. However, the results for prompt $J/psi$ production do not agree with predictions based on fixed-order non-relativistic QCD. This is the first measurement of the $p_{rm T}$ fraction carried by prompt $J/psi$ mesons in jets at any experiment.
60 - Sang Pyo Kim 2016
We explore the connection between the distribution of particles spontaneously produced from an electric field or black hole and the vacuum persistence, twice the imaginary part of the one-loop effective action. Employing the reconstruction conjecture, we find the effective action for the Bose-Einstein or Fermi-Dirac distribution. The Schwinger effect in ${rm AdS}_2$ is computed via the phase-integral method in the static coordinates. The Hawking radiation and Schwinger effect of a charged black hole is rederived and interpreted via the phase-integral. Finally, we discuss the relation between the vacuum persistence and the trace or gravitational anomalies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا