Phase Diagram of Cold Polarized Fermi Gas in Two Dimensions


Abstract in English

The superfluid phase diagrams of a two-dimensional cold polarized Fermi gas in the BCS-BEC crossover are systematically and analytically investigated. In the BCS-Leggett mean field theory, the transition from unpolarized superfluid phase to normal phase is always of first order. For a homogeneous system, the two critical Zeeman fields and the critical population imbalance are analytically determined in the whole coupling parameter region, and the superfluid-normal mixed phase is shown to be the ground state between the two critical fields. The density profile in the presence of a harmonic trap calculated in the local density approximation exhibits a shell structure, a superfluid core at the center and a normal shell outside. For weak interaction, the normal shell contains a partially polarized cloud with constant density difference surrounded by a fully polarized state. For strong interaction, the normal shell is totally in fully polarized state with a density profile depending only on the global population imbalance. The di-fermion bound states can survive in the whole highly imbalanced normal phase.

Download