Do you want to publish a course? Click here

Induced quasi-actions: a remark

149   0   0.0 ( 0 )
 Added by Bruce Kleiner
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

In this note we observe that the notion of an induced representation has an analog for quasi-actions. We then use induced quasi-actions to refine some earlier rigidity results for product spaces.



rate research

Read More

The set of equivalence classes of cobounded actions of a group on different hyperbolic metric spaces carries a natural partial order. The resulting poset thus gives rise to a notion of the best hyperbolic action of a group as the largest element of this poset, if such an element exists. We call such an action a largest hyperbolic action. While hyperbolic groups admit largest hyperbolic actions, we give evidence in this paper that this phenomenon is rare for non-hyperbolic groups. In particular, we prove that many families of groups of geometric origin do not have largest hyperbolic actions, including for instance many 3-manifold groups and most mapping class groups. Our proofs use the quasi-trees of metric spaces of Bestvina--Bromberg--Fujiwara, among other tools. In addition, we give a complete characterization of the poset of hyperbolic actions of Anosov mapping torus groups, and we show that mapping class groups of closed surfaces of genus at least two have hyperbolic actions which are comparable only to the trivial action.
This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give a review of the complete classification of such groups up to quasi-isometries and we compare the quasi-isometric classification with the bi-Lipschitz classification. On the other hand, we study the problem whether two quasi-isometrically equivalent Lie groups may be made isometric if equipped with suitable left-invariant Riemannian metrics. We show that this is the case for three-dimensional simply connected groups, but it is not true in general for multiply connected groups. The counterexample also demonstrates that `may be made isometric is not a transitive relation.
257 - Bruce Kleiner 2007
We give a new proof of Gromovs theorem that any finitely generated group of polynomial growth has a finite index nilpotent subgroup. Unlike the original proof, it does not rely on the Montgomery-Zippin-Yamabe structure theory of locally compact groups.
We give a complete list of the cobounded actions of solvable Baumslag-Solitar groups on hyperbolic metric spaces up to a natural equivalence relation. The set of equivalence classes carries a natural partial order first introduced by Abbott-Balasubramanya-Osin, and we describe the resulting poset completely. There are finitely many equivalence classes of actions, and each equivalence class contains the action on a point, a tree, or the hyperbolic plane.
In this paper, we prove that certain spaces are not quasi-isometric to Cayley graphs of finitely generated groups. In particular, we answer a question of Woess and prove a conjecture of Diestel and Leader by showing that certain homogeneous graphs are not quasi-isometric to a Cayley graph of a finitely generated group. This paper is the first in a sequence of papers proving results announced in [EFW0]. In particular, this paper contains many steps in the proofs of quasi-isometric rigidity of lattices in Sol and of the quasi-isometry classification of lamplighter groups. The proofs of those results are completed in [EFW1]. The method used here is based on the idea of coarse differentiation introduced in [EFW0].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا