Do you want to publish a course? Click here

The OPE of the B-meson light-cone wavefunction for exclusive B decays: radiative corrections and higher-dimensional operators

301   0   0.0 ( 0 )
 Added by Kazuhiro Tanaka
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the B-meson light-cone wavefunction relevant for QCD factorization approach for exclusive B-meson decays. We derive the operator product expansion for the B-meson light-cone wavefunction, taking into account the local composite operators of dimension less than 6 and calculating the radiative corrections at order alpha_s for the corresponding Wilson coefficients. The result embodies peculiar UV and IR behaviors of the B-meson light-cone wavefunction, the Sudakov-type double logarithmic effects and the mixing of the multiparticle states with additional gluons inside the B meson. The former effects are induced from the cusp singularity in the radiative corrections, while the latter is manifested by the participation of the higher-dimensional operators associated with the nonperturbative structure of the B meson.



rate research

Read More

139 - Ze Long Liu 2020
The rare radiative $B$-meson decay $B^-togammaell^-bar u$ and the radiative Higgs-boson decay $htogammagamma$ mediated by light-quark loops both receive large logarithmic corrections in QCD, which can be resummed using factorization theorems derived in soft-collinear effective theory. In these factorization theorems the same radiative jet function appears, which is a central object in the study of factorization beyond the leading order in scale ratios. We calculate this function at two-loop order both in momentum space and in a dual space, where its renormalization-group evolution takes on a simpler form. We also derive the two-loop anomalous dimension of the jet function and present the exact solution to its evolution equation at two-loop order. Another important outcome of our analysis is the explicit form of the two-loop anomalous dimension of the $B$-meson light-cone distribution amplitude in momentum space.
110 - Hiroyuki Kawamura 2009
The $B$-meson light-cone distribution amplitude (LCDA) is defined as the matrix element of a quark-antiquark bilocal light-cone operator in the heavy-quark effective theory (HQET) and is a building block of QCD factorization formula for exclusive $B$-meson decays. When the corresponding bilocal HQET operator has a light-like distance $t$ between the quark and antiquark fields, the scale $sim 1/t$ separates the UV and IR regions, which induce the cusp singularity in radiative corrections and the mixing of multiparticle states in nonperturbative corrections, respectively. We treat the bilocal HQET operator based on the operator product expansion (OPE), disentangling the singularities from the IR and UV regions systematically. The matching at the next-to-leading order $alpha_s$ is performed in the $overline{rm MS}$ scheme with a complete set of local operators of dimension $d le 5$, through a manifestly gauge-invariant calculation organizing all contributions in the coordinate space. The result exhibits the Wilson coefficients with Sudakov-type double logarithms and the higher-dimensional operators with additional gluons. This OPE yields the $B$-meson LCDA for $t$ less than $sim 1$ GeV$^{-1}$, in terms of $bar{Lambda}= m_B - m_b$ and the two additional HQET parameters as matrix elements of dimension-5 operators. The impact of these novel HQET parameters on the integral relevant to exclusive $B$ decays, $lambda_B$, is also discussed.
194 - John Walsh 2008
Radiative and leptonic decays of B-mesons represent an excellent laboratory for the search for New Physics. I present here recent results on radiative and leptonic decays from the Belle and BABAR collaborations.
206 - Yutaro Sato 2014
The $b rightarrow s gamma$, $b rightarrow d gamma$ and $b rightarrow s ell^+ ell^-$ processes are allowed at higher order via the electroweak loop or box diagrams in the Standard model. It is sensitive probe to search for new physics beyond the Standard model because new particles might enter in the loop. We present preliminary results of branching fraction of the $bar{B} rightarrow X_s gamma$, $CP$ asymmetry in the $bar{B} rightarrow X_{s+d} gamma$, and the forward-backward asymmetry in the $bar{B} rightarrow X_s ell^+ ell^-$. The results are based on a data sample containing $772 times 10^6 Bbar{B}$ pairs recorded at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider.
209 - H. Eberl , E. Ginina (1 2021
We study supersymmetric (SUSY) effects on $C_7(mu_b)$ and $C_7(mu_b)$ which are the Wilson coefficients (WCs) for $b to s gamma$ at b-quark mass scale $mu_b$ and are closely related to radiative $B$-meson decays. The SUSY-loop contributions to $C_7(mu_b)$ and $C_7(mu_b)$ are calculated at leading order (LO) in the Minimal Supersymmetric Standard Model (MSSM) with general quark-flavour violation (QFV). For the first time we perform a systematic MSSM parameter scan for the WCs $C_7(mu_b)$ and $C_7(mu_b)$ respecting all the relevant constraints, i.e. the theoretical constraints from vacuum stability conditions and the experimental constraints, such as those from $K$- and $B$-meson data and electroweak precision data, as well as recent limits on SUSY particle masses and the 125 GeV Higgs boson data from LHC experiments. From the parameter scan we find the following: (1) The MSSM contribution to Re($C_7(mu_b)$) can be as large as $sim pm 0.05$, which could correspond to about 3$sigma$ significance of New Physics (NP) signal in the future LHCb and Belle II experiments. (2) The MSSM contribution to Re($C_7(mu_b)$) can be as large as $sim -0.08$, which could correspond to about 4$sigma$ significance of NP signal in the future LHCb and Belle II experiments. (3) These large MSSM contributions to the WCs are mainly due to (i) large scharm-stop mixing and large scharm/stop involved trilinear couplings, (ii) large sstrange-sbottom mixing and large sstrange-sbottom involved trilinear couplings and (iii) large bottom Yukawa coupling $Y_b$ for large $tanbeta$ and large top Yukawa coupling $Y_t$. In case such large NP contributions to the WCs are really observed in the future experiments at Belle II and LHCb Upgrade, this could be the imprint of QFV SUSY (the MSSM with general QFV).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا