Do you want to publish a course? Click here

The effectiveness of position- and composition-specific gap costs for protein similarity searches

135   0   0.0 ( 0 )
 Publication date 2008
  fields Biology
and research's language is English




Ask ChatGPT about the research

The flexibility in gap cost enjoyed by Hidden Markov Models (HMMs) is expected to afford them better retrieval accuracy than position-specific scoring matrices (PSSMs). We attempt to quantify the effect of more general gap parameters by separately examining the influence of position- and composition-specific gap scores, as well as by comparing the retrieval accuracy of the PSSMs constructed using an iterative procedure to that of the HMMs provided by Pfam and SUPERFAMILY, curated ensembles of multiple alignments. We found that position-specific gap penalties have an advantage over uniform gap costs. We did not explore optimizing distinct uniform gap costs for each query. For Pfam, PSSMs iteratively constructed from seeds based on HMM consensus sequences perform equivalently to HMMs that were adjusted to have constant gap transition probabilities, albeit with much greater variance. We observed no effect of composition-specific gap costs on retrieval performance.



rate research

Read More

454 - Michael E. Wall 2006
Although the importance of protein dynamics in protein function is generally recognized, the role of protein fluctuations in allosteric effects scarcely has been considered. To address this gap, the Kullback-Leibler divergence (Dx) between protein conformational distributions before and after ligand binding was proposed as a means of quantifying allosteric effects in proteins. Here, previous applications of Dx to methods for analysis and simulation of proteins are first reviewed, and their implications for understanding aspects of protein function and protein evolution are discussed. Next, equations for Dx suggest that k_{B}TDx should be interpreted as an allosteric free energy -- the free energy associated with changing the ligand-free protein conformational distribution to the ligand-bound conformational distribution. This interpretation leads to a thermodynamic model of allosteric transitions that unifies existing perspectives on the relation between ligand binding and changes in protein conformational distributions. The definition of Dx is used to explore some interesting mathematical relations among commonly recognized thermodynamic and biophysical quantities, such as the total free energy change upon ligand binding, and ligand-binding affinities for individual protein conformations. These results represent the beginnings of a theoretical framework for considering the full protein conformational distribution in modeling allosteric transitions. Early applications of the framework have produced results with implications both for methods for coarsed-grained modeling of proteins, and for understanding the relation between ligand binding and protein dynamics.
Normal mode analysis offers an efficient way of modeling the conformational flexibility of protein structures. Simple models defined by contact topology, known as elastic network models, have been used to model a variety of systems, but the validation is typically limited to individual modes for a single protein. We use anisotropic displacement parameters from crystallography to test the quality of prediction of both the magnitude and directionality of conformational variance. Normal modes from four simple elastic network model potentials and from the CHARMM forcefield are calculated for a data set of 83 diverse, ultrahigh resolution crystal structures. While all five potentials provide good predictions of the magnitude of flexibility, the methods that consider all atoms have a clear edge at prediction of directionality, and the CHARMM potential produces the best agreement. The low-frequency modes from different potentials are similar, but those computed from the CHARMM potential show the greatest difference from the elastic network models. This was illustrated by computing the dynamic correlation matrices from different potentials for a PDZ domain structure. Comparison of normal mode results with anisotropic temperature factors opens the possibility of using ultrahigh resolution crystallographic data as a quantitative measure of molecular flexibility. The comprehensive evaluation demonstrates the costs and benefits of using normal mode potentials of varying complexity. Comparison of the dynamic correlation matrices suggests that a combination of topological and chemical potentials may help identify residues in which chemical forces make large contributions to intramolecular coupling.
Position-specific scoring matrices (PSSMs) are useful for detecting weak homology in protein sequence analysis, and they are thought to contain some essential signatures of the protein families. In order to elucidate what kind of ingredients constitute such family-specific signatures, we apply singular value decomposition to a set of PSSMs and examine the properties of dominant right and left singular vectors. The first right singular vectors were correlated with various amino acid indices including relative mutability, amino acid composition in protein interior, hydropathy, or turn propensity, depending on proteins. A significant correlation between the first left singular vector and a measure of site conservation was observed. It is shown that the contribution of the first singular component to the PSSMs act to disfavor potentially but falsely functionally important residues at conserved sites. The second right singular vectors were highly correlated with hydrophobicity scales, and the corresponding left singular vectors with contact numbers of protein structures. It is suggested that sequence alignment with a PSSM is essentially equivalent to threading supplemented with functional information. The presented method may be used to separate functionally important sites from structurally important ones, and thus it may be a useful tool for predicting protein functions.
96 - Hao Tian , Peng Tao 2020
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major worldwide public health emergency that has infected over $1.5$ million people. The partially open state of S1 subunit in spike glycoprotein is considered vital for its infection with host cell and is represented as a key target for neutralizing antibodies. However, the mechanism elucidating the transition from the closed state to the partially open state still remains unclear. Here, we applied a combination of Markov state model, transition path theory and random forest to analyze the S1 motion. Our results explored a promising complete conformational movement of receptor-binding domain, from buried, partially open, to detached states. We also numerically confirmed the transition probability between those states. Based on the asymmetry in both the dynamics behavior and backbone C$alpha$ importance, we further suggested a relation between chains in the trimer spike protein, which may help in the vaccine design and antibody neutralization.
Current drug discovery is expensive and time-consuming. It remains a challenging task to create a wide variety of novel compounds with desirable pharmacological properties and cheaply available to low-income people. In this work, we develop a generative network complex (GNC) to generate new drug-like molecules based on the multi-property optimization via the gradient descent in the latent space of an autoencoder. In our GNC, both multiple chemical properties and similarity scores are optimized to generate and predict drug-like molecules with desired chemical properties. To further validate the reliability of the predictions, these molecules are reevaluated and screened by independent 2D fingerprint-based predictors to come up with a few hundreds of new drug candidates. As a demonstration, we apply our GNC to generate a large number of new BACE1 inhibitors, as well as thousands of novel alternative drug candidates for eight existing market drugs, including Ceritinib, Ribociclib, Acalabrutinib, Idelalisib, Dabrafenib, Macimorelin, Enzalutamide, and Panobinostat.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا