Do you want to publish a course? Click here

Cohomology of Frobenius Algebras and the Yang-Baxter Equation

274   0   0.0 ( 0 )
 Added by J. Scott Carter
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

A cohomology theory for multiplications and comultiplications of Frobenius algebras is developed in low dimensions in analogy with Hochschild cohomology of bialgebras based on deformation theory. Concrete computations are provided for key examples. Skein theoretic constructions give rise to solutions to the Yang-Baxter equation using multiplications and comultiplications of Frobenius algebras, and 2-cocycles are used to obtain deformations of R-matrices thus obtained.



rate research

Read More

In this paper we discuss and characterize several set-theoretic solutions of the Yang-Baxter equation obtained using skew lattices, an algebraic structure that has not yet been related to the Yang-Baxter equation. Such solutions are degenerate in general, and thus different from solutions obtained from braces and other algebraic structures. Our main result concerns a description of a set-theoretic solution of the Yang-Baxter equation, obtained from an arbitrary skew lattice. We also provide a construction of a cancellative and distributive skew lattice on a given family of pairwise disjoint sets.
186 - Chengming Bai 2007
We introduce a notion of left-symmetric bialgebra which is an analogue of the notion of Lie bialgebra. We prove that a left-symmetric bialgebra is equivalent to a symplectic Lie algebra with a decomposition into a direct sum of the underlying vector spaces of two Lagrangian subalgebras. The latter is called a parakahler Lie algebra or a phase space of a Lie algebra in mathematical physics. We introduce and study coboundary left-symmetric bialgebras and our study leads to what we call $S$-equation, which is an analogue of the classical Yang-Baxter equation. In a certain sense, the $S$-equation associated to a left-symmetric algebra reveals the left-symmetry of the products. We show that a symmetric solution of the $S$-equation gives a parakahler Lie algebra. We also show that such a solution corresponds to the symmetric part of a certain operator called ${cal O}$-operator, whereas a skew-symmetric solution of the classical Yang-Baxter equation corresponds to the skew-symmetric part of an ${cal O}$-operator. Thus a method to construct symmetric solutions of the $S$-equation (hence parakahler Lie algebras) from ${cal O}$-operators is provided. Moreover, by comparing left-symmetric bialgebras and Lie bialgebras, we observe that there is a clear analogue between them and, in particular, parakahler Lie groups correspond to Poisson-Lie groups in this sense.
279 - Chengming Bai 2007
In this paper, the different operator forms of classical Yang-Baxter equation are given in the tensor expression through a unified algebraic method. It is closely related to left-symmetric algebras which play an important role in many fields in mathematics and mathematical physics. By studying the relations between left-symmetric algebras and classical Yang-Baxter equation, we can construct left-symmetric algebras from certain classical r-matrices and conversely, there is a natural classical r-matrix constructed from a left-symmetric algebra which corresponds to a parakahler structure in geometry. Moreover, the former in a special case gives an algebraic interpretation of the ``left-symmetry as a Lie bracket ``left-twisted by a classical r-matrix.
Several aspects of relations between braces and non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation are discussed and many consequences are derived. In particular, for each positive integer $n$ a finite square-free multipermutation solution of the Yang-Baxter equation with multipermutation level $n$ and an abelian involutive Yang-Baxter group is constructed. This answers a problem of Gateva-Ivanova and Cameron. It is also proved that finite non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation whose associated involutive Yang-Baxter group is abelian are retractable in the sense of Etingof, Schedler and Soloviev. Earlier the authors proved this with the additional square-free hypothesis on the solutions. Retractability of solutions is also proved for finite square-free non-degenerate involutive set-theoretic solutions associated to a left brace.
170 - Gongxiang Liu , Siu-Hung Ng 2012
We define total Frobenius-Schur indicator for each object in a spherical fusion category $C$ as a certain canonical sum of its higher indicators. The total indicators are invariants of spherical fusion categories. If $C$ is the representation category of a semisimple quasi-Hopf algebra $H$, we prove that the total indicators are non-negative integers which satisfy a certain divisibility condition. In addition, if $H$ is a Hopf algebra, then all the total indicators are positive. Consequently, the positivity of total indicators is a necessary condition for a quasi-Hopf algebra being gauge equivalent to a Hopf algebra. Certain twisted quantum doubles of finite groups and some examples of Tambara-Yamagami categories are discussed for the sufficiency of this positivity condition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا