Do you want to publish a course? Click here

Many-body Rabi oscillations of Rydberg excitation in small mesoscopic samples

448   0   0.0 ( 0 )
 Added by Jovica Stanojevic
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the collective aspects of Rydberg excitation in ultracold mesoscopic systems. Strong interactions between Rydberg atoms influence the excitation process and impose correlations between excited atoms. The manifestations of the collective behavior of Rydberg excitation are the many-body Rabi oscillations, spatial correlations between atoms as well as the fluctuations of the number of excited atoms. We study these phenomena in detail by numerically solving the many-body Schredinger equation.



rate research

Read More

311 - J. Stanojevic , R. C^ote 2008
We investigate the excitation dynamics of Rydberg atoms in ultracold atomic samples by expanding the excitation probability and the correlation function between excited atoms in powers of the isolated atom Rabi frequency $Omega$. In the Heisenberg picture, we give recurrence relations to calculate any order of the expansions, which ere expected to be well-behaved for arbitrarily strong interactions. For homogeneous large samples, we give the explicit form of the expansions, up to $Omega^4$, averaged over all possible random spatial distributions of atoms, for the most important cases of excitation pulses and interactions.
We develop a theoretical approach for the dynamics of Rydberg excitations in ultracold gases, with a realistically large number of atoms. We rely on the reduction of the single-atom Bloch equations to rate equations, which is possible under various experimentally relevant conditions. Here, we explicitly refer to a two-step excitation-scheme. We discuss the conditions under which our approach is valid by comparing the results with the solution of the exact quantum master equation for two interacting atoms. Concerning the emergence of an excitation blockade in a Rydberg gas, our results are in qualitative agreement with experiment. Possible sources of quantitative discrepancy are carefully examined. Based on the two-step excitation scheme, we predict the occurrence of an antiblockade effect and propose possible ways to detect this excitation enhancement experimentally in an optical lattice as well as in the gas phase.
The simple resonant Rabi oscillation of a two-level system in a single-mode coherent field reveals complex features at the mesoscopic scale, with oscillation collapses and revivals. Using slow circular Rydberg atoms interacting with a superconducting microwave cavity, we explore this phenomenon in an unprecedented range of interaction times and photon numbers. We demonstrate the efficient production of `cat states, quantum superposition of coherent components with nearly opposite phases and sizes in the range of few tens of photons. We measure cuts of their Wigner functions revealing their quantum coherence and observe their fast decoherence. This experiment opens promising perspectives for the rapid generation and manipulation of non-classical states in cavity and circuit Quantum Electrodynamics.
155 - O. Morsch , I. Lesanovsky 2018
In the last twenty years, Rydberg atoms have become a versatile and much studied system for implementing quantum many-body systems in the framework of quantum computation and quantum simulation. However, even in the absence of coherent evolution Rydberg systems exhibit interesting and non-trivial many-body phenomena such as kinetic constraints and non-equilibrium phase transitions that are relevant in a number of research fields. Here we review our recent work on such systems, where dissipation leads to incoherent dynamics and also to population decay. We show that those two effects, together with the strong interactions between Rydberg atoms, give rise to a number of intriguing phenomena that make cold Rydberg atoms an attractive test-bed for classical many-body processes and quantum generalizations thereof.
The recent observation of high-lying Rydberg states of excitons in semiconductors with relatively high binding energy motivates exploring their applications in quantum nonlinear optics and quantum information processing. Here, we study Rydberg excitation dynamics of a mesoscopic array of excitons to demonstrate its application in simulation of quantum many-body dynamics. We show that the $mathbb{Z}_2$-ordered phase can be reached using physical parameters available for cuprous oxide (Cu$_2$O) by optimizing driving laser parameters such as duration, intensity, and frequency. In an example, we study the application of our proposed system to solving the Maximum Independent Set (MIS) problem based on the Rydberg blockade effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا