We show that any Lambda-ring, in the sense of Riemann-Roch theory, which is finite etale over the rational numbers and has an integral model as a Lambda-ring is contained in a product of cyclotomic fields. In fact, we show that the category of them is described in a Galois-theoretic way in terms of the monoid of pro-finite integers under multiplication and the cyclotomic character. We also study the maximality of these integral models and give a more precise, integral version of the result above. These results reveal an interesting relation between Lambda-rings and class field theory.